miRNA–miRNA crosstalk: from genomics to phenomics

The discovery of microRNA (miRNA)-miRNA crosstalk has greatly improved our understanding of complex gene regulatory networks in normal and disease-specific physiological conditions. Numerous approaches have been proposed for modeling miRNA-miRNA networks based on genomic sequences, miRNA-mRNA regulation, functional information and phenomics alone, or by integrating heterogeneous data. In addition, it is expected that miRNA-miRNA crosstalk can be reprogrammed in different tissues or specific diseases. Thus, transcriptome data have also been integrated to construct context-specific miRNA-miRNA networks. In this review, we summarize the state-of-the-art miRNA-miRNA network modeling methods, which range from genomics to phenomics, where we focus on the need to integrate heterogeneous types of omics data. Finally, we suggest future directions for studies of crosstalk of noncoding RNAs. This comprehensive summarization and discussion elucidated in this work provide constructive insights into miRNA-miRNA crosstalk.

[1]  Anindya Dutta,et al.  The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. , 2007, Genes & development.

[2]  Yang Liu,et al.  Inferring the soybean (Glycine max) microRNA functional network based on target gene network , 2014, Bioinform..

[3]  Cheng Liang,et al.  Mirsynergy: detecting synergistic miRNA regulatory modules by overlapping neighbourhood expansion , 2014, Bioinform..

[4]  Andrew P. Harrison,et al.  Dissecting the chromatin interactome of microRNA genes , 2013, Nucleic acids research.

[5]  Xianghuo He,et al.  Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3′ untranslated region , 2010, Oncogene.

[6]  Dominik Lutter,et al.  GeneSet2miRNA: finding the signature of cooperative miRNA activities in the gene lists , 2009, Nucleic Acids Res..

[7]  R. Hrdličková,et al.  Multiple Tumor Suppressor microRNAs Regulate Telomerase and TCF7, an Important Transcriptional Regulator of the Wnt Pathway , 2014, PloS one.

[8]  Yun Xiao,et al.  Prioritizing Candidate Disease miRNAs by Topological Features in the miRNA Target–Dysregulated Network: Case Study of Prostate Cancer , 2011, Molecular Cancer Therapeutics.

[9]  Reema S. Wahdan-Alaswad,et al.  “Sister” miRNAs in cancers , 2013, Cell cycle.

[10]  Ju Han Kim,et al.  Understanding cooperativity of microRNAs via microRNA association networks , 2013, BMC Genomics.

[11]  Mohammed Al-Shalalfa,et al.  MicroRNA Response Elements-Mediated miRNA-miRNA Interactions in Prostate Cancer , 2012, Adv. Bioinformatics.

[12]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[13]  John D. Minna,et al.  miR-93, miR-98, and miR-197 Regulate Expression of Tumor Suppressor Gene FUS1 , 2009, Molecular Cancer Research.

[14]  Xia Li,et al.  Construction and analysis of lncRNA-lncRNA synergistic networks to reveal clinically relevant lncRNAs in cancer , 2015, Oncotarget.

[15]  S. Kundu,et al.  A network analysis of miRNA mediated gene regulation of rice: crosstalk among biological processes. , 2015, Molecular bioSystems.

[16]  Paul J. Kennedy,et al.  Identification of lung cancer miRNA-miRNA co-regulation networks through a progressive data refining approach. , 2015, Journal of theoretical biology.

[17]  Martin Reczko,et al.  DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways , 2012, Nucleic Acids Res..

[18]  R. Aharonov,et al.  Identification of hundreds of conserved and nonconserved human microRNAs , 2005, Nature Genetics.

[19]  Jing Bai,et al.  Dissection of the potential characteristic of miRNA-miRNA functional synergistic regulations. , 2013, Molecular bioSystems.

[20]  Fang Zhou,et al.  LncRNA profile study reveals a three-lncRNA signature associated with the survival of patients with oesophageal squamous cell carcinoma , 2014, Gut.

[21]  Yi Zhao,et al.  Clustered microRNAs' coordination in regulating protein-protein interaction network , 2009, BMC Systems Biology.

[22]  Xin-shu Dong,et al.  Identification of miRNA-miRNA synergistic relationships in colorectal cancer. , 2013, International journal of biological macromolecules.

[23]  V. Velculescu,et al.  Implications of micro-RNA profiling for cancer diagnosis , 2006, Oncogene.

[24]  Hao-Hui Chen,et al.  TUMORIGENESIS AND NEOPLASTIC PROGRESSION The PTEN-AKT-mTOR / RICTOR Pathway in Nasal Natural Killer Cell Lymphoma Is Activated by miR-494-3 p via PTEN But Inhibited by miR-1423 p via RICTOR , 2015 .

[25]  Yitzhak Pilpel,et al.  Global and Local Architecture of the Mammalian microRNA–Transcription Factor Regulatory Network , 2007, PLoS Comput. Biol..

[26]  Phillip W. Lord,et al.  Semantic Similarity in Biomedical Ontologies , 2009, PLoS Comput. Biol..

[27]  Sudip Kundu,et al.  C2Analyzer: Co-target–Co-function Analyzer , 2014, Genom. Proteom. Bioinform..

[28]  V. Ambros The functions of animal microRNAs , 2004, Nature.

[29]  Catia Pesquita,et al.  Metrics for GO based protein semantic similarity: a systematic evaluation , 2008, BMC Bioinformatics.

[30]  Sylvie Ranwez,et al.  The semantic measures library and toolkit: fast computation of semantic similarity and relatedness using biomedical ontologies , 2014, Bioinform..

[31]  Li Teng,et al.  4DGenome: a comprehensive database of chromatin interactions. , 2015, Bioinformatics.

[32]  Zhe Wang,et al.  Dissection of Protein Interactomics Highlights MicroRNA Synergy , 2013, PloS one.

[33]  Shuping Xiao,et al.  miRNA functional synergistic network analysis of mice with ischemic stroke , 2014, Neurological Sciences.

[34]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[35]  Yun Xiao,et al.  MiRNA–miRNA synergistic network: construction via co-regulating functional modules and disease miRNA topological features , 2010, Nucleic acids research.

[36]  Weixiang Shi,et al.  MiRNA synergistic network construction and enrichment analysis for common target genes in small-cell lung cancer. , 2012, Asian Pacific journal of cancer prevention : APJCP.

[37]  Dong Wang,et al.  Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases , 2010, Bioinform..

[38]  Dong Liu,et al.  Inferring plant microRNA functional similarity using a weighted protein-protein interaction network , 2015, BMC Bioinformatics.

[39]  Hongying Xu,et al.  Risk miRNA screening of ovarian cancer based on miRNA functional synergistic network , 2014, Journal of Ovarian Research.

[40]  Muller Fabbri,et al.  A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. , 2005, The New England journal of medicine.

[41]  Wen-Hsiung Li,et al.  MicroRNA regulation of human protein protein interaction network. , 2007, RNA.

[42]  William Stafford Noble,et al.  Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes , 2014, Nature Methods.

[43]  Xia Li,et al.  Comprehensive analysis of the functional microRNA–mRNA regulatory network identifies miRNA signatures associated with glioma malignant progression , 2013, Nucleic acids research.

[44]  S. Lawler,et al.  MicroRNAs in cancer: biomarkers, functions and therapy. , 2014, Trends in molecular medicine.

[45]  M. Peter,et al.  Targeting of mRNAs by multiple miRNAs: the next step , 2010, Oncogene.

[46]  E. Giovannetti,et al.  MicroRNAs cooperatively inhibit a network of tumor suppressor genes to promote pancreatic tumor growth and progression. , 2014, Gastroenterology.

[47]  H. Ebhardt,et al.  Correlations of microRNA:microRNA expression patterns reveal insights into microRNA clusters and global microRNA expression patterns. , 2016, Molecular bioSystems.

[48]  Eun-Young Choi,et al.  The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3'UTR. , 2004, Genes & development.

[49]  Hong Liu,et al.  Prioritizing breast cancer subtype related miRNAs using miRNA-mRNA dysregulated relationships extracted from their dual expression profiling. , 2013, Journal of theoretical biology.

[50]  M. Cleary,et al.  Combinatorial microRNAs: Working together to make a difference , 2008, Cell cycle.

[51]  Eric C. Lai,et al.  Adult-specific functions of animal microRNAs , 2013, Nature Reviews Genetics.

[52]  Burton B. Yang,et al.  Both mature miR-17-5p and passenger strand miR-17-3p target TIMP3 and induce prostate tumor growth and invasion , 2013, Nucleic acids research.

[53]  Alexander van Oudenaarden,et al.  Genome-wide dissection of microRNA functions and cotargeting networks using gene set signatures. , 2010, Molecular cell.

[54]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[55]  Wei-Ting Huang,et al.  The PTEN-AKT-mTOR/RICTOR Pathway in Nasal Natural Killer Cell Lymphoma Is Activated by miR-494-3p via PTEN But Inhibited by miR-142-3p via RICTOR. , 2015, The American journal of pathology.

[56]  Yun Xiao,et al.  Identifying dysfunctional miRNA-mRNA regulatory modules by inverse activation, cofunction, and high interconnection of target genes: a case study of glioblastoma. , 2013, Neuro-oncology.

[57]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[58]  Lukasz A. Kurgan,et al.  Comprehensive overview and assessment of computational prediction of microRNA targets in animals , 2015, Briefings Bioinform..

[59]  Xiangxiang Zeng,et al.  Integrative approaches for predicting microRNA function and prioritizing disease-related microRNA using biological interaction networks , 2016, Briefings Bioinform..

[60]  F. Chen,et al.  miRNA-miRNA interaction implicates for potential mutual regulatory pattern. , 2012, Gene.

[61]  Dongguo Li,et al.  Combination of microRNA expression profiling with genome-wide SNP genotyping to construct a coronary artery disease-related miRNA-miRNA synergistic network. , 2014, Bioscience trends.

[62]  H. Dweep,et al.  miRWalk2.0: a comprehensive atlas of microRNA-target interactions , 2015, Nature Methods.

[63]  Haixiu Yang,et al.  Inferring Potential microRNA-microRNA Associations Based on Targeting Propensity and Connectivity in the Context of Protein Interaction Network , 2013, PloS one.

[64]  Bolin Liu,et al.  Functional cooperation of miR-125a, miR-125b, and miR-205 in entinostat-induced downregulation of erbB2/erbB3 and apoptosis in breast cancer cells , 2013, Cell Death and Disease.

[65]  Michal Linial,et al.  Toward a combinatorial nature of microRNA regulation in human cells , 2012, Nucleic acids research.

[66]  E. Moss,et al.  Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. , 2002, Developmental biology.

[67]  R. Plasterk,et al.  The diverse functions of microRNAs in animal development and disease. , 2006, Developmental cell.

[68]  R Hofestädt,et al.  CancerNet: a database for decoding multilevel molecular interactions across diverse cancer types , 2015, Oncogenesis.

[69]  S. Giordano,et al.  MiRNAs as new master players , 2009, Cell cycle.

[70]  Maite Huarte,et al.  Expanding the p53 regulatory network: LncRNAs take up the challenge. , 2016, Biochimica et biophysica acta.

[71]  Liya Hu,et al.  Crucial microRNAs and genes of human primary breast cancer explored by microRNA-mRNA integrated analysis , 2015, Tumor Biology.

[72]  S. Lowe,et al.  A microRNA polycistron as a potential human oncogene , 2005, Nature.

[73]  Weidong Tian,et al.  Molecular Mechanisms and Function Prediction of Long Noncoding RNA , 2012, TheScientificWorldJournal.