An investigation into the swash plate vibration and pressure pulsation of piston pumps based on full fluid-structure interactions

In this paper, dynamic analyses of the swash plate vibration and pressure pulsation of an aircraft piston pump based on fluid-structure interactions (FSIs) are presented. Models of the swash plate piston pumps with three FSIs (named full FSIs and non FSI) are given. The simulation results of the discharge pressures at different rotation speeds in the synthesized pump model and experiments show good agreement. The numerical simulation results of the forces on the swash plate and the flow rate of the outlet chamber are presented and compared. The results of the two models show that the discharge pressure pulsation mostly depends on the kinematic relations of the piston slipper-shoe units (FSI-1), and is almost isolated from the swash plate vibration. The full FSIs simulation shows that the swash plate vibration is strongly influenced by the pressure pulsation through the control actuator mechanism (FSI-2) and the control valve mechanism (FSI-3), but the non FSI model does not show the same result. The full FSIs model is much more accurate in predicting the vibration of the swash plate and the pulsation of the discharge pressure than the non FSI model.中文概要目 的航空柱塞泵是飞机液压系统的核心元件,具有高压高转速的特点,其压力脉动是飞机液压系统振动的主要激励源,对飞机液压系统的安全性和可靠性具有重要影响。本文首次全面分析了压力脉动和斜盘振动之间的关系,对降低柱塞泵的压力脉动、提高其可靠性具有重要理论意义。创新点1. 将柱塞泵压力脉动和斜盘振动相结合,综合分析两者相互作用关系;2. 综合分析柱塞、斜盘控制阀、斜盘控制柱塞三者间的作用关系,建立全耦合模型。通过仿真分析和实验验证,指出普通模型的局限性以及全耦合模型在研究斜盘振动与压力脉动的真实内在关系的可靠性。方 法1. 通过仿真和试验对比,分析全耦合模型和普通模型在压力脉动仿真结果上的差别及原因;2. 通过对比分析,确定全耦合模型在斜盘振动仿真方面具有的较高精度;3. 通过柱塞泵高压腔流量仿真结果,讨论柱塞泵压力脉动成因以及与斜盘的振动关系;4. 通过斜盘力矩仿真分析讨论斜盘振动成因以及与压力脉动的关系;5. 通过分析压力脉动、斜盘振动和转速三者间的关系,探讨减轻斜盘振动与减小压力脉动的有效途径。结 论1. 全耦合模型的精确度比普通模型高,能较好地预测斜盘振动和压力脉动状态。 2. 斜盘振动的基频部分主要取决于压力脉动的动态特性,同时还受控制阀机构(FSI-3)和变量柱塞机构(FSI-2)的动态特性影响。压力脉动主要由柱塞泵的柱塞运动关系(FSI-1)决定,不受斜盘高频振动影响。

[1]  K. K. Meher,et al.  Optimal foundation design of a vertical pump assembly , 2006 .

[3]  Mohammad Abuhaiba,et al.  Geometric and Kinematic Modeling of a Variable Displacement Hydraulic Bent-Axis Piston Pump , 2010 .

[4]  Noah D. Manring,et al.  Physical Limitations for the Bandwidth Frequency of a Pressure Controlled, Axial-Piston Pump , 2011 .

[5]  Rama B. Bhat,et al.  VIBRATION ANALYSIS OF CONSTANT POWER REGULATED SWASH PLATE AXIAL PISTON PUMPS , 2003 .

[6]  Huayong Yang,et al.  Engineering research in fluid power: a review , 2015 .

[7]  Noah D. Manring,et al.  The Discharge Flow Ripple of an Axial-Piston Swash-Plate Type Hydrostatic Pump , 2000 .

[8]  D N Johnston,et al.  Measurement of Positive Displacement Pump Flow Ripple and Impedance , 1996 .

[9]  Long Quan,et al.  Characteristics of delivery pressure in the axial piston pump with combination of variable displacement and variable speed , 2015, J. Syst. Control. Eng..

[10]  J. Watton,et al.  The effect of oil pressure and temperature on barrel film thickness and barrel dynamics of an axial piston pump , 2012 .

[11]  Wang Lm,et al.  Narrow-band fluid borne noise attenuation using time-domain online control algorithms in a simple hydraulic system , 2009 .

[12]  Bing Xu,et al.  A new design method for the transition region of the valve plate for an axial piston pump , 2015 .

[13]  J. Koralewski Influence of hydraulic oil viscosity on the volumetric losses in a variable capacity piston pump , 2011 .

[14]  Lip Huat Saw,et al.  Load and Stress Analysis for the Swash Plate of an Axial Piston Pump/Motor , 2011 .

[15]  Patrick S. K. Chua,et al.  Dynamic vibration analysis of a swash-plate type water hydraulic motor , 2006 .

[16]  Kyong Sei Lee,et al.  A numerical and experimental investigation of parametric effect on flow ripple , 2015 .