An Approximate Analysis of the Join the Shortest Queue (JSQ) Policy

This paper presents an accurate analytical model for evaluating the performance of the join the shortest queue (JSQ) policy. The system considered consists of N identical queues each of which may have single or multiple servers. A birth-death Markov process is used to model the evolution of the number of jobs in the system. Our results show that this method provides very accurate estimates of the average job response times.

[1]  Cauligi S. Raghavendra,et al.  An analysis of the join the shortest queue (JSQ) policy , 1992, [1992] Proceedings of the 12th International Conference on Distributed Computing Systems.

[2]  Onno Boxma,et al.  Boundary value problems in queueing system analysis , 1983 .

[3]  M. J. M. Posner,et al.  Algorithmic and approximation analyses of the shorter queue model , 1987 .

[4]  B. W. Conolly,et al.  THE AUTOSTRADA QUEUEING PROBLEM , 1984 .

[5]  Ivo J. B. F. Adan,et al.  Analysis of the symmetric shortest queue problem , 1990 .

[6]  Randolph D. Nelson,et al.  An approximation to the response time for shortest queue routing , 1989, SIGMETRICS '89.

[7]  Charles Knessl,et al.  Two Parallel M/G/1 Queues where Arrivals Join the System with the Smaller Buffer Content , 1987, IEEE Trans. Commun..

[8]  Wayne L. Winston OPTIMALITY OF THE SHORTEST LINE DISCIPLINE , 1977 .

[9]  J. P. C. Blanc The Power-Series Algorithm Applied to the Shortest-Queue Model , 1992, Oper. Res..

[10]  Cauligi S. Raghavendra,et al.  A Dynamic Load-Balancing Policy With a Central Job Dispatcher (LBC) , 1992, IEEE Trans. Software Eng..

[11]  Cauligi S. Raghavendra,et al.  A state-aggregation method for analyzing dynamic load-balancing policies , 1993, [1993] Proceedings. The 13th International Conference on Distributed Computing Systems.

[12]  G. J. Foschini,et al.  A Basic Dynamic Routing Problem and Diffusion , 1978, IEEE Trans. Commun..

[13]  J. Kingman Two Similar Queues in Parallel , 1961 .

[14]  Marcel F. Neuts,et al.  Matrix-Geometric Solutions in Stochastic Models , 1981 .

[15]  Frank A. Haight,et al.  TWO QUEUES IN PARALLEL , 1958 .

[16]  Philip Heidelberger,et al.  A spectral method for confidence interval generation and run length control in simulations , 1981, CACM.

[17]  Randolph D. Nelson,et al.  An Approximation for the Mean Response Time for Shortest Queue Routing with General Inerarrival and Service Times , 1993, Perform. Evaluation.

[18]  H. McKean,et al.  Two queues in parallel , 1977 .

[19]  Winfried K. Grassmann,et al.  A numerically stable algorithm for two server queue models , 1991, Queueing Syst. Theory Appl..

[20]  Anthony Ephremides,et al.  A simple dynamic routing problem , 1980 .

[21]  Shlomo Halfin,et al.  The shortest queue problem , 1985 .

[22]  Wk Grassmann,et al.  Transient and steady state results for two parallel queues , 1980 .

[23]  Ilya Gertsbakh,et al.  The shorter queue problem: A numerical study using the matrix-geometric solution☆ , 1984 .