Hydration Effects on the Permselectivity-Conductivity Trade-Off in Polymer Electrolytes

Polymer electrolytes, which are commonly used as separator materials in electrochemical devices, have ionic conductivity that is thought to be controlled by segmental mobility. Thus, any improvements made toward increasing ionic mobility come at the expense of mechanical integrity. However, selectively solvating the ionic domain, the region responsible for ion conduction, with water or polar organic solvents presents a potential opportunity to circumvent this physical constraint. Here, we explore the role of hydration on the transport properties of membranes formed from randomly sulfonated polystyrene (PS-r-sPS). We find that the water volume fraction underpins an intrinsic trade-off between separator permselectivity (Ψm) and ion conductivity (κ)—thus, improvements in ion diffusion because of increased water content come at the expense of charge density in the membrane which yields a reduced Ψm. We provide a summary of the Ψm–κ trade-off for a suite of commercially available separators to elucidate struct...

[1]  Ngai Yin Yip,et al.  Elucidating conductivity-permselectivity tradeoffs in electrodialysis and reverse electrodialysis by structure-property analysis of ion-exchange membranes , 2019, Journal of Membrane Science.

[2]  Erik Luijten,et al.  Dielectric Effects on Ion Transport in Polyelectrolyte Brushes. , 2019, ACS macro letters.

[3]  A. West,et al.  Measurement of VO2+ Transference Number in Nafion with Varying Concentrations of Sulfuric Acid , 2019, Journal of The Electrochemical Society.

[4]  L. Madsen,et al.  Influence of Rubbery versus Glassy Backbone Dynamics on Multiscale Transport in Polymer Membranes , 2018, Macromolecules.

[5]  B. Freeman,et al.  Ion Diffusion Coefficients in Ion Exchange Membranes: Significance of Counterion Condensation , 2018, Macromolecules.

[6]  Geoffrey M. Geise,et al.  Increasing salt size selectivity in low water content polymers via polymer backbone dynamics , 2018 .

[7]  Trung Dac Nguyen,et al.  Ionic Correlations in Random Ionomers. , 2018, ACS nano.

[8]  J. Pablo,et al.  Ion Distribution in Microphase-Separated Copolymers with Periodic Dielectric Permittivity , 2018 .

[9]  Hongxia Luo,et al.  Water and Salt Transport Properties of Triptycene-Containing Sulfonated Polysulfone Materials for Desalination Membrane Applications. , 2018, ACS applied materials & interfaces.

[10]  Y. Cohen,et al.  A perspective on reverse osmosis water desalination: Quest for sustainability , 2017 .

[11]  M. Mahanthappa,et al.  Low-symmetry sphere packings of simple surfactant micelles induced by ionic sphericity , 2017, Proceedings of the National Academy of Sciences.

[12]  B. Freeman,et al.  Predicting Salt Permeability Coefficients in Highly Swollen, Highly Charged Ion Exchange Membranes. , 2017, ACS applied materials & interfaces.

[13]  A. West,et al.  Method of Measuring Salt Transference Numbers in Ion-Selective Membranes , 2017 .

[14]  Onnuri Kim,et al.  One-volt-driven superfast polymer actuators based on single-ion conductors , 2016, Nature Communications.

[15]  J. DeSimone,et al.  Relationship between Conductivity, Ion Diffusion, and Transference Number in Perfluoropolyether Electrolytes , 2016 .

[16]  B. Freeman,et al.  Partitioning of mobile ions between ion exchange polymers and aqueous salt solutions: importance of counter-ion condensation. , 2016, Physical chemistry chemical physics : PCCP.

[17]  F. Steuber,et al.  Multiscale Lithium and Counterion Transport in an Electrospun Polymer-Gel Electrolyte , 2015 .

[18]  Dong Wang,et al.  Microporous Polyimides with Rationally Designed Chain Structure Achieving High Performance for Gas Separation , 2014 .

[19]  T. Lodge,et al.  High-modulus, high-conductivity nanostructured polymer electrolyte membranes via polymerization-induced phase separation. , 2014, Nano letters.

[20]  Benny D. Freeman,et al.  Fundamental water and salt transport properties of polymeric materials , 2014 .

[21]  K. Nijmeijer,et al.  Performance-determing membrane properties in reverse electrodialysis , 2013 .

[22]  B. Logan,et al.  Ionic resistance and permselectivity tradeoffs in anion exchange membranes. , 2013, ACS applied materials & interfaces.

[23]  Vikram Jadhao,et al.  A variational formulation of electrostatics in a medium with spatially varying dielectric permittivity. , 2013, The Journal of chemical physics.

[24]  B. Freeman,et al.  Energy-efficient polymeric gas separation membranes for a sustainable future: A review , 2013 .

[25]  K. Winey,et al.  Network Structure and Strong Microphase Separation for High Ion Conductivity in Polymerized Ionic Liquid Block Copolymers , 2013 .

[26]  Rachid Meziane,et al.  Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. , 2013, Nature materials.

[27]  T. Chakrabarty,et al.  End group cross-linked 2-(dimethylamino) ethylmethacrylate based anion exchange membrane for electrodialysis , 2013 .

[28]  B. Freeman,et al.  Characterization of Aluminum-Neutralized Sulfonated Styrenic Pentablock Copolymer Films , 2013 .

[29]  B. Freeman,et al.  Sodium chloride sorption in sulfonated polymers for membrane applications , 2012 .

[30]  Enver Guler,et al.  Tailor-made anion-exchange membranes for salinity gradient power generation using reverse electrodialysis. , 2012, ChemSusChem.

[31]  Yoshinobu Tanaka Ion-exchange membrane electrodialysis program and its application to multi-stage continuous saline water desalination , 2012 .

[32]  M. Elimelech,et al.  Membrane-based processes for sustainable power generation using water , 2012, Nature.

[33]  Matthew D. Green,et al.  Synthesis of imidazolium-containing aba triblock copolymers: Role of charge placement, charge density, and ionic liquid incorporation , 2012 .

[34]  S. S. Madaeni,et al.  The Electrochemical Characterization of Ion Exchange Membranes in Different Electrolytic Environments: Investigation of Concentration and pH Effects , 2012 .

[35]  B. Freeman,et al.  Sodium chloride diffusion in sulfonated polymers for membrane applications , 2012 .

[36]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[37]  M. Elimelech,et al.  The Future of Seawater Desalination: Energy, Technology, and the Environment , 2011, Science.

[38]  Andrew L. Schmitt,et al.  Effect of Nanoscale Morphology on the Conductivity of Polymerized Ionic Liquid Block Copolymers , 2011 .

[39]  Manabu Tanaka,et al.  Anion conductive block poly(arylene ether)s: synthesis, properties, and application in alkaline fuel cells. , 2011, Journal of the American Chemical Society.

[40]  Zhiyang Zhang,et al.  Cation/anion associations in ionic liquids modulated by hydration and ionic medium. , 2011, The journal of physical chemistry. B.

[41]  T. Arnot,et al.  A review of reverse osmosis membrane materials for desalinationDevelopment to date and future poten , 2011 .

[42]  Y. Elabd,et al.  Block Copolymers for Fuel Cells , 2011 .

[43]  Tomonori Saito,et al.  Morphology and transport properties of midblock-sulfonated triblock copolymers , 2010 .

[44]  Bruno Scrosati,et al.  Ionic-liquid materials for the electrochemical challenges of the future. , 2009, Nature materials.

[45]  Matthias Wessling,et al.  Practical potential of reverse electrodialysis as process for sustainable energy generation. , 2009, Environmental science & technology.

[46]  A. Hexemer,et al.  Effect of Molecular Weight and Salt Concentration on Conductivity of Block Copolymer Electrolytes , 2009 .

[47]  O. Borodin,et al.  Effect of ion distribution on conductivity of block copolymer electrolytes. , 2009, Nano letters.

[48]  R. Mezzenga,et al.  Structure−Properties Relationship in Proton Conductive Sulfonated Polystyrene−Polymethyl Methacrylate Block Copolymers (sPS−PMMA) , 2008 .

[49]  L. Robeson,et al.  The upper bound revisited , 2008 .

[50]  Timothy P. Lodge,et al.  A Unique Platform for Materials Design , 2008, Science.

[51]  Moon Jeong Park,et al.  Phase Behavior of Symmetric Sulfonated Block Copolymers , 2008 .

[52]  Yi Li,et al.  MIXED MATRIX MEMBRANES (MMMS) COMPRISING ORGANIC POLYMERS WITH DISPERSED INORGANIC FILLERS FOR GAS SEPARATION , 2007 .

[53]  Y. Elabd,et al.  Sulfonation and Characterization of Poly(styrene-isobutylene-styrene) Triblock Copolymers at High Ion-Exchange Capacities , 2004 .

[54]  Pankaj Arora,et al.  Battery separators. , 2004, Chemical reviews.

[55]  N. C. Tan,et al.  Immiscibility in polystyrene/sulfonated polystyrene blends , 1995 .

[56]  L. Robeson,et al.  High performance polymers for membrane separation , 1994 .

[57]  T. Springer,et al.  Water Uptake by and Transport Through Nafion® 117 Membranes , 1993 .

[58]  L. Robeson,et al.  Correlation of separation factor versus permeability for polymeric membranes , 1991 .

[59]  J. L. Duda,et al.  Free-volume equations for polymer-penetrant diffusion , 1989 .

[60]  Alain Guyot,et al.  Polymer electrolytes , 1985, Polymer Bulletin.

[61]  J. S. Vrentas,et al.  Diffusion of large penetrant molecules in amorphous polymers , 1979 .

[62]  P. Meares,et al.  The diffusion of electrolytes in a cation-exchange resin membrane I. Theoretical , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[63]  L. G. Longsworth,et al.  Transference Numbers by the Method of Moving Boundaries. , 1932 .

[64]  H. W. Doughty MOHR'S METHOD FOR THE DETERMINATION OF SILVER AND HALOGENS IN OTHER THAN NEUTRAL SOLUTIONS , 1924 .