Monitoring of milk gelation using a low-frequency ultrasonic technique

Abstract A low-frequency ultrasonic device (50–100 kHz) in highly sharpened end sensors that behave as point sources was applied to explore the relations between the physical properties measured through the variation of the wave time-of-flight (transit time of wave) and structural changes during gel formation. This is related to two factors: the ambient temperature and the mechanical resistance of the medium. The network evolution was interpreted by an approach based on the Flory model. The physical significance of this model was shown through a series of experiments using a low-frequency ultrasonic technique. Response curves demonstrate the different stages during gel formation.

[1]  P. Walstra,et al.  The physical chemistry of curd making. , 1986 .

[2]  Molecular weight distribution and moments for condensation polymerization of monomers having reactivity different from their homologues , 1979 .

[3]  J. Bacri,et al.  Critical behaviour of the elastic constant and the friction coefficient in the gel phase of gelatin , 1983 .

[4]  Butrus T. Khuri-Yakub,et al.  Hertzian contact transducers for nondestructive evaluation , 1996 .

[5]  M. Trapanese,et al.  Spinodal demixing, percolation and gelation of biostructural polymers , 1990 .

[6]  A. Kobilinsky,et al.  Étude multifactorielle de la coagulation mixte du lait analysée par viscoélasticimétrie , 1991 .

[7]  D. McMahon,et al.  Enzymic Coagulation of Casein Micelles: A Review , 1984 .

[8]  M. Allsopp The development and importance of suspension PVC morphology , 1981 .

[9]  Walter M. Madigosky,et al.  DYNAMIC HARDNESS TESTER AND CURE METER , 1993 .

[10]  Yolande Noël,et al.  Comparaison des cinétiques de coagulation enzymatique et mixte du lait. Influence du calcium , 1989 .

[11]  Colm P. O'Donnell,et al.  On-line sensing techniques for coagulum setting in renneted milks , 2000 .

[12]  J. Bacri,et al.  Ultrasonic waves : a tool for gelation process measurements , 1980 .

[13]  B. Khuri-Yakub,et al.  Lamb wave excitation by Hertzian contacts with applications in NDE , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[14]  Walter H. Stockmayer,et al.  Theory of Molecular Size Distribution and Gel Formation in Branched‐Chain Polymers , 1943 .

[15]  Chyung Ay,et al.  Milk coagulation cut-time determination using ultrasonics , 1996 .

[16]  D. Stauffer Can percolation theory be applied to critical phenomena at gel points? , 1981 .

[17]  Chyung Ay,et al.  Evaluating milk coagulation with ultrasonics , 1999 .

[18]  J. Clerc,et al.  La percolation - Modèles, simulations analogiques et numériques , 1983 .

[19]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[20]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[21]  P. Flory Principles of polymer chemistry , 1953 .

[22]  Dominique Durand,et al.  Ultrasonic study of milk clotting , 1994 .

[23]  L. Bohlin,et al.  Viscoelastic Properties of Coagulating Milk , 1984 .

[24]  S. Gunasekaran,et al.  Evaluating milk coagualtion with ultrasonics : Ultrasonic applications in the food industry , 1994 .

[25]  B. Eichinger Random elastic networks. I. Computer simulation of linked stars , 1981 .

[26]  R. B. Thompson,et al.  Angular dependence of ultrasonic wave propagation in a stressed, orthorhombic continuum: Theory and application to the measurement of stress and texture , 1986 .

[27]  P. Fox Proteolysis During Cheese Manufacture and Ripening , 1989 .

[28]  G. C. Cheeseman,et al.  Developments in dairy chemistry—1: Edited by P. F. Fox. Applied Science Publishers Ltd, London, 1982. 409 pp. Price: £44.00 , 1983 .

[29]  D. Dalgleish,et al.  The Enzymatic Coagulation of Milk , 1993 .

[30]  Butrus T. Khuri-Yakub,et al.  SINGLE MODE LAMB WAVE EXCITATION IN THIN PLATES BY HERTZIAN CONTACTS , 1996 .

[31]  Shuyu Lin Study on the longitudinal-torsional composite mode exponential ultrasonic horns , 1996 .