Locality and bounding-box quality of two-dimensional space-filling curves

Space-filling curves can be used to organise points in the plane into bounding-box hierarchies (such as R-trees). We develop measures of the bounding-box qualityof space-filling curves that express how effective different curves are for this purpose. We give general lower bounds on the bounding-box quality and on locality according to Gotsman and Lindenbaum for a large class of curves. We describe a generic algorithm to approximate these and similar quality measures for any given curve. Using our algorithm we find good approximations of the locality and bounding-box quality of several known and new space-filling curves. Surprisingly, some curves with bad locality by Gotsman and Lindenbaum's measure, have good bounding-box quality, while the curve with the best-known locality has relatively bad bounding-box quality.

[1]  R. Durbin,et al.  Optimal numberings of an N N array , 1986 .

[2]  H. Hahn Leçons sur l'intégration et la recherche des fonctions primitives , 1904 .

[3]  Christos Faloutsos,et al.  Fractals for secondary key retrieval , 1989, PODS.

[4]  D. Hilbert Über die stetige Abbildung einer Linie auf ein Flächenstück , 1935 .

[5]  Herman J. Haverkort,et al.  Four-dimensional hilbert curves for R-trees , 2009, JEAL.

[6]  Rolf Niedermeier,et al.  Towards optimal locality in mesh-indexings , 1997, Discret. Appl. Math..

[7]  Rolf Niedermeier,et al.  On Multidimensional Curves with Hilbert Property , 2000, Theory of Computing Systems.

[8]  H. Lebesgue,et al.  Lecons Sur L'Integration Et LA Recherche Des Fonctions Primitives , 1973 .

[9]  Murray Cole,et al.  Implementing the hierarchical PRAM on the 2D mesh: analyses and experiments , 1995, Proceedings.Seventh IEEE Symposium on Parallel and Distributed Processing.

[10]  Christos Faloutsos,et al.  Analysis of the Clustering Properties of the Hilbert Space-Filling Curve , 2001, IEEE Trans. Knowl. Data Eng..

[11]  Konstantin Bauman The dilation factor of the Peano-Hilbert curve , 2006 .

[12]  Harry W. Nelson Elemente der Mathematik , 1911 .

[13]  G. Peano Sur une courbe, qui remplit toute une aire plane , 1890 .

[14]  Mark de Berg,et al.  The Priority R-tree: a practically efficient and worst-case optimal R-tree , 2004, SIGMOD '04.

[15]  E. H. Moore On certain crinkly curves , 1900 .

[16]  D. Hilbert Ueber die stetige Abbildung einer Line auf ein Flächenstück , 1891 .

[17]  Desh Ranjan,et al.  Space-Filling Curves and Their Use in the Design of Geometric Data Structures , 1997, Theor. Comput. Sci..

[18]  Walter Wunderlich Über Peano-Kurven. , 1973 .

[19]  Jens-Michael Wierum Logarithmic path-length in space-filling curves , 2002, CCCG.

[20]  Yannis Manolopoulos,et al.  R-Trees: Theory and Applications , 2005, Advanced Information and Knowledge Processing.

[21]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[22]  Michael Lindenbaum,et al.  On the metric properties of discrete space-filling curves , 1996, IEEE Trans. Image Process..

[23]  H. V. Jagadzsh Linear Clustering of Objects with Multiple Attributes , 1998 .

[24]  P. Sanders,et al.  On the Manhattan-Distance Between Points on Space-Filling Mesh-Indexings , 1996 .

[25]  Jens-Michael Wierum,et al.  On the Quality of Partitions Based on Space-Filling Curves , 2002, International Conference on Computational Science.

[26]  Peter Winkler,et al.  Optimal linear arrangement of a rectangular grid , 2000, Discret. Math..

[27]  Hiroshi Fukuda,et al.  Infinite Series of Generalized Gosper Space Filling Curves , 2005, CJCDGCGT.

[28]  Christos Faloutsos,et al.  On packing R-trees , 1993, CIKM '93.