Distinct chemistry between Zn and Li at varied temperature.

[1]  Yi‐Chun Lu,et al.  Design strategies for low temperature aqueous electrolytes , 2022, Nano Research Energy.

[2]  Hongfei Li,et al.  Insight on Organic Molecules in Aqueous Zn‐Ion Batteries with an Emphasis on the Zn Anode Regulation , 2022, Advanced Energy Materials.

[3]  Zhaodong Huang,et al.  Recent advances and future perspectives for aqueous zinc-ion capacitors , 2021, Materials Futures.

[4]  L. Qu,et al.  A Self-healing Zinc Ion Battery under -20 °C , 2021, Energy Storage Materials.

[5]  C. Zhi,et al.  Categorizing wearable batteries: Unidirectional and omnidirectional deformable batteries , 2021, Matter.

[6]  L. Qu,et al.  An Aqueous Anti‐Freezing and Heat‐Tolerant Symmetric Microsupercapacitor with 2.3 V Output Voltage , 2021, Advanced Energy Materials.

[7]  Yitai Qian,et al.  Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer , 2021, Energy & Environmental Science.

[8]  C. Zhi,et al.  Toward Practical High‐Areal‐Capacity Aqueous Zinc‐Metal Batteries: Quantifying Hydrogen Evolution and a Solid‐Ion Conductor for Stable Zinc Anodes , 2021, Advanced materials.

[9]  C. Zhi,et al.  Calendar Life of Zn Batteries Based on Zn Anode with Zn Powder/Current Collector Structure , 2021, Advanced Energy Materials.

[10]  Zhijie Wang,et al.  Electrolyte Design for In Situ Construction of Highly Zn2+‐Conductive Solid Electrolyte Interphase to Enable High‐Performance Aqueous Zn‐Ion Batteries under Practical Conditions , 2021, Advanced materials.

[11]  Fangxi Xie,et al.  Mechanism for Zincophilic Sites on Zinc‐Metal Anode Hosts in Aqueous Batteries , 2021, Advanced Energy Materials.

[12]  T. Deng,et al.  Solvation Structure Design for Aqueous Zn Metal Batteries. , 2020, Journal of the American Chemical Society.

[13]  C. Zhi,et al.  Dendrites in Zn‐Based Batteries , 2020, Advanced materials.

[14]  Yong Lu,et al.  Modulating electrolyte structure for ultralow temperature aqueous zinc batteries , 2020, Nature Communications.

[15]  Kang Xu,et al.  Realizing high zinc reversibility in rechargeable batteries , 2020 .

[16]  Yang Zhao,et al.  Temperature‐Dependent Chemical and Physical Microstructure of Li Metal Anodes Revealed through Synchrotron‐Based Imaging Techniques , 2020, Advanced materials.

[17]  Yonggang Wang,et al.  Zinc-organic Battery with a Wide Operation-temperature Window from -70 to 150 °C. , 2020, Angewandte Chemie.

[18]  C. Zhi,et al.  Hydrogen‐Substituted Graphdiyne Ion Tunnels Directing Concentration Redistribution for Commercial‐Grade Dendrite‐Free Zinc Anodes , 2020, Advanced materials.

[19]  Zonghai Chen,et al.  Advanced Electrolytes for Fast‐Charging High‐Voltage Lithium‐Ion Batteries in Wide‐Temperature Range , 2020, Advanced Energy Materials.

[20]  Jian Wang,et al.  Impact of high-temperature environment on the optimal cycle rate of lithium-ion battery , 2020 .

[21]  Xiaobo Ji,et al.  Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. , 2020, Angewandte Chemie.

[22]  Junliang Zhang,et al.  Fundamentals and Challenges of Lithium Ion Batteries at Temperatures between −40 and 60 °C , 2020, Advanced Energy Materials.

[23]  Jiang Zhou,et al.  Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes , 2020 .

[24]  Jiang Zhou,et al.  Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc‐ion Batteries , 2020, ENERGY & ENVIRONMENTAL MATERIALS.

[25]  Y. Gogotsi,et al.  Extending the low temperature operational limit of Li-ion battery to −80 °C , 2019, Energy Storage Materials.

[26]  Xiaobo Ji,et al.  Insights into Three-dimensional Dendrite-free Zinc Anode on Copper Mesh with Zinc-oriented Polyacrylamide Electrolyte Additive. , 2019, Angewandte Chemie.

[27]  Xiaodi Ren,et al.  Enabling Stable Lithium Metal Anode through Electrochemical Kinetics Manipulation , 2019, Advanced Functional Materials.

[28]  C. Zhi,et al.  A Superior δ-MnO2 Cathode and a Self-Healing Zn-δ-MnO2 Battery. , 2019, ACS nano.

[29]  Bing Sun,et al.  Temperature-dependent Nucleation and Growth of Dendrite-free Lithium Metal Anodes. , 2019, Angewandte Chemie.

[30]  Jiecai Han,et al.  Recent Development in Separators for High-Temperature Lithium-Ion Batteries. , 2019, Small.

[31]  Allen Pei,et al.  Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy , 2019, Nature Energy.

[32]  Liwen Jin,et al.  A comprehensive experimental study on temperature-dependent performance of lithium-ion battery , 2019, Applied Thermal Engineering.

[33]  Swastik Basu,et al.  Exploiting self-heat in a lithium metal battery for dendrite healing , 2019, Energy Storage Materials.

[34]  G. Cui,et al.  Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase , 2019, Energy & Environmental Science.

[35]  Dingchang Lin,et al.  Fast lithium growth and short circuit induced by localized-temperature hotspots in lithium batteries , 2019, Nature Communications.

[36]  V. Viswanathan,et al.  Prospect of Thermal Shock Induced Healing of Lithium Dendrite , 2019, ACS Energy Letters.

[37]  Chengyi Song,et al.  Temperature effect and thermal impact in lithium-ion batteries: A review , 2018, Progress in Natural Science: Materials International.

[38]  Fei Wang,et al.  Highly reversible zinc metal anode for aqueous batteries , 2018, Nature Materials.

[39]  Lu Li,et al.  Self-heating–induced healing of lithium dendrites , 2018, Science.

[40]  Dirk Uwe Sauer,et al.  A study on the dependency of the open-circuit voltage on temperature and actual aging state of lithium-ion batteries , 2017 .

[41]  N. Brandon,et al.  The effect of thermal gradients on the performance of lithium-ion batteries , 2014 .

[42]  J. C. Ballesteros,et al.  Zinc electrodeposition in the presence of polyethylene glycol 20000 , 2007 .

[43]  J. Selman,et al.  Thermal modeling and design considerations of lithium-ion batteries , 1999 .

[44]  Jiang Zhou,et al.  Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode , 2020 .