Recent Applications and Future Perspectives of Chemiluminescent and Bioluminescent Imaging Technologies

[1]  Ling Zhang,et al.  Bioluminescence imaging of fibroblast activation protein-alpha in vivo and human plasma with highly sensitive probe. , 2022, Analytical biochemistry.

[2]  Jibin Song,et al.  Constructing turn-on bioluminescent probes for real-time imaging of reactive oxygen species during cisplatin chemotherapy. , 2022, Biosensors & bioelectronics.

[3]  Yaqing Liu,et al.  Long-Lasting Chemiluminescence-Based POCT for Portable and Visual Pathogenic Detection and In Situ Inactivation. , 2022, Analytical chemistry.

[4]  Minyong Li,et al.  A Bioluminescent Probe for Detecting Norepinephrine in Vivo. , 2022, Analytical chemistry.

[5]  N. Kalogiouri,et al.  Direct and Indirect Chemiluminescence: Reactions, Mechanisms and Challenges , 2021, Molecules.

[6]  Yinhuan Li,et al.  Chemiluminescence resonance energy transfer determination of uric acid with fluorescent covalent organic framework as energy acceptor. , 2021, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[7]  Bingran Yu,et al.  Chemiluminescence: From mechanism to applications in biological imaging and therapy , 2021, Aggregate.

[8]  Baohong Liu,et al.  Single Biomolecule Imaging by Electrochemiluminescence. , 2021, Journal of the American Chemical Society.

[9]  Chun‐Sing Lee,et al.  Organic Semiconducting Luminophores for Near‐Infrared Afterglow, Chemiluminescence, and Bioluminescence Imaging , 2021, Advanced Functional Materials.

[10]  T. Deng,et al.  Photoactivatable Red Chemiluminescent AIEgen Probe for In Vitro/Vivo Imaging Assay of Hydrazine. , 2021, Analytical chemistry.

[11]  Zhijuan Cao,et al.  An activatable chemiluminescence probe based on phenoxy-dioxetane scaffold for biothiol imaging in living systems. , 2021, Journal of pharmaceutical and biomedical analysis.

[12]  G. Liang,et al.  Bioluminescence Imaging of Urokinase-Type Plasminogen Activator Activity in Vitro and in Tumors. , 2021, Analytical chemistry.

[13]  Yan Chen,et al.  Noninvasive Bioluminescence Imaging of Matrix Metalloproteinase-14 Activity in Lung Cancer Using a Membrane-Bound Biosensor. , 2021, Analytical chemistry.

[14]  Zhijuan Cao,et al.  A Novel Chemiluminescence Probe for Sensitive Detection of Fibroblast Activation Protein-Alpha In Vitro and in Living Systems. , 2021, Analytical chemistry.

[15]  Xiaoyan Cui,et al.  Chemiluminescence molecular sensor for endogenous HOCl in vivo , 2021, Sensors and Actuators B: Chemical.

[16]  L. Mezzanotte,et al.  Emerging tools for bioluminescence imaging. , 2021, Current opinion in chemical biology.

[17]  Sheng Yang,et al.  Long-Lasting Bioluminescence Imaging of the Fibroblast Activation Protein by an Amphiphilic Block Copolymer-Based Probe. , 2021, Analytical chemistry.

[18]  Jicun Ren,et al.  Multicolor Chemiluminescent Resonance Energy-Transfer System for In Vivo High-Contrast and Targeted Imaging. , 2021, Analytical chemistry.

[19]  Yongqing Zhou,et al.  ALP-Activated Chemiluminescence PDT Nano-Platform for Liver Cancer-Specific Theranostics. , 2021, ACS applied bio materials.

[20]  Hang Zhang,et al.  Recent achievements of bioluminescence imaging based on firefly luciferin-luciferase system. , 2020, European journal of medicinal chemistry.

[21]  M. Vendrell,et al.  A Functional Chemiluminescent Probe for in Vivo Imaging of Natural Killer Cell Activity Against Tumours , 2020, Angewandte Chemie.

[22]  G. Liang,et al.  A Bioluminescent Probe for Simultaneously Imaging Esterase and Histone Deacetylase Activity in a Tumor. , 2020, Analytical chemistry.

[23]  Guobao Xu,et al.  Recent Advances in Electrochemiluminescence and Chemiluminescence of Metal Nanoclusters , 2020, Molecules.

[24]  Kanyi Pu,et al.  Molecular Chemiluminescent Probes with a Record Long Near-infrared Turn-on Wavelength for In vivo Imaging. , 2020, Angewandte Chemie.

[25]  Yishu Fu,et al.  A novel chemiluminescence imaging immunosensor for prostate specific antigen detection based on a multiple signal amplification strategy. , 2020, Biosensors & bioelectronics.

[26]  R. Mason,et al.  Ratiometric pH imaging using a 1,2-dioxetane chemiluminescence resonance energy transfer sensor in live animals. , 2020, ACS sensors.

[27]  Chongzhao Ran,et al.  Turn-on chemiluminescence probes and dual-amplification of signal for detection of amyloid beta species in vivo , 2020, Nature Communications.

[28]  Kanyi Pu,et al.  Near‐Infrared Chemiluminescent Reporters for In Vivo Imaging of Reactive Oxygen and Nitrogen Species in Kidneys , 2020, Advanced Functional Materials.

[29]  Minyong Li,et al.  Biological applications of a turn-on bioluminescent probe for monitoring sulfite oxidase deficiency in vivo. , 2020, European journal of medicinal chemistry.

[30]  Sheng Yang,et al.  Noncovalently Caged Firefly Luciferins Enable Amplifiable Bioluminescence Sensing of Hyaluronidase-1 Activity In Vivo. , 2020, ACS sensors.

[31]  Xuefeng Guo,et al.  Single-Molecule Electrical Detection: A Promising Route toward the Fundamental Limits of Chemistry and Life Science. , 2020, Accounts of chemical research.

[32]  Minyong Li,et al.  Bioluminescence imaging of exogenous & endogenous cysteine in vivo with a highly selective probe. , 2020, Bioorganic & medicinal chemistry letters.

[33]  G. Liang,et al.  Cathepsin B Turns Bioluminescence "On" for Tumor Imaging. , 2019, Analytical chemistry.

[34]  Jinyi Wang,et al.  An Efficient Strategy for the Synthesis and Modification of 2-Hydroxyethylluciferin for Highly Sensitive Bioluminescence Imaging of Endogenous Hydrogen Sulfide in Cancer Cells and Nude Mice. , 2019, Analytical chemistry.

[35]  Minyong Li,et al.  Bioluminescence imaging of selenocysteine in vivo with a highly sensitive probe. , 2019, ACS sensors.

[36]  Minyong Li,et al.  Bioluminescent Probe for Monitoring Endogenous Fibroblast Activation Protein Alpha. , 2019, Analytical chemistry.

[37]  Minyong Li,et al.  In vivo bioluminescence imaging of labile iron pools in a murine model of sepsis with a highly selective probe. , 2019, Talanta.

[38]  Fei Liu,et al.  An Activatable Chemiluminescent Probe for Sensitive Detection of γ-Glutamyl Transpeptidase Activity in vivo. , 2019, Analytical chemistry.

[39]  D. Citterio,et al.  Biothiol-activatable bioluminescent coelenterazine derivative for molecular imaging in vitro and in vivo. , 2019, Analytical chemistry.

[40]  Felix Weihs,et al.  Red-shifted bioluminescence Resonance Energy Transfer: Improved tools and materials for analytical in vivo approaches , 2019, TrAC Trends in Analytical Chemistry.

[41]  Nir Hananya,et al.  Recent Advances and Challenges in Luminescent Imaging: Bright Outlook for Chemiluminescence of Dioxetanes in Water , 2019, ACS central science.

[42]  H. Chen,et al.  A bioluminescent strategy for imaging palladium in living cells and animals with chemoselective probes based on luciferin-luciferase system. , 2019, Talanta.

[43]  D. Scherman,et al.  Imaging and therapeutic applications of persistent luminescence nanomaterials , 2019, Advanced drug delivery reviews.

[44]  Xiurong Yang,et al.  Dual-Wavelength Ratiometric Electrochemiluminescence Immunosensor for Cardiac Troponin I Detection. , 2018, Analytical chemistry.

[45]  Tao Wang,et al.  A high-throughput in vivo selection method for luciferase variants , 2018, Sensors and Actuators B: Chemical.

[46]  Xinrui Duan,et al.  Chemiluminescence of Conjugated-Polymer Nanoparticles by Direct Oxidation with Hypochlorite. , 2018, Analytical chemistry.

[47]  Minyong Li,et al.  Bioluminescent Probe for Detection of Starvation-Induced Pantetheinase Upregulation. , 2018, Analytical Chemistry.

[48]  Jianzhong Lu,et al.  Design of a phosphinate-based bioluminescent probe for superoxide radical anion imaging in living cells. , 2018, Luminescence : the journal of biological and chemical luminescence.

[49]  Xudong Guo,et al.  Specific Imaging of Tyrosinase in Vivo with 3-Hydroxybenzyl Caged D-Luciferins. , 2018, Analytical chemistry.

[50]  Timothy A. Su,et al.  Chemiluminescent Probes for Activity-Based Sensing of Formaldehyde Released from Folate Degradation in Living Mice. , 2018, Angewandte Chemie.

[51]  Hongyuan Chen,et al.  In Situ Visualization of Electrocatalytic Reaction Activity at Quantum Dots for Water Oxidation. , 2018, Analytical chemistry.

[52]  Jicun Ren,et al.  Catalytic Chemiluminescence Polymer Dots for Ultrasensitive In Vivo Imaging of Intrinsic Reactive Oxygen Species in Mice. , 2018, Analytical chemistry.

[53]  C. Lau,et al.  Bioluminescence Imaging of Carbon Monoxide in Living Cells and Nude Mice Based on Pd0-Mediated Tsuji-Trost Reaction. , 2018, Analytical chemistry.

[54]  G. Liang,et al.  Using Bioluminescence Turn-On To Detect Cysteine in Vitro and in Vivo. , 2018, Analytical chemistry.

[55]  Minyong Li,et al.  In Vivo Bioluminescence Imaging of Cobalt Accumulation in a Mouse Model. , 2018, Analytical chemistry.

[56]  K. Oka,et al.  Highly Sensitive Bioluminescent Probe for Thiol Detection in Living Cells. , 2018, Chemistry, an Asian journal.

[57]  Hideyuki Okano,et al.  Single-cell bioluminescence imaging of deep tissue in freely moving animals , 2018, Science.

[58]  Xiaobing Zhang,et al.  A Bioluminescent Probe for Imaging Endogenous Peroxynitrite in Living Cells and Mice. , 2018, Analytical chemistry.

[59]  N. Walter,et al.  Life under the Microscope: Single-Molecule Fluorescence Highlights the RNA World. , 2018, Chemical reviews.

[60]  H. Girault,et al.  Soft Electrochemical Probes for Mapping the Distribution of Biomarkers and Injected Nanomaterials in Animal and Human Tissues. , 2017, Angewandte Chemie.

[61]  Nir Hananya,et al.  A Glowing Trajectory between Bio- and Chemiluminescence: From Luciferin-Based Probes to Triggerable Dioxetanes. , 2017, Angewandte Chemie.

[62]  T. Nagai,et al.  Recent progress in expanding the chemiluminescent toolbox for bioimaging. , 2017, Current opinion in biotechnology.

[63]  Laura Mezzanotte,et al.  In Vivo Molecular Bioluminescence Imaging: New Tools and Applications. , 2017, Trends in biotechnology.

[64]  Jennifer A. Prescher,et al.  Orthogonal Luciferase-Luciferin Pairs for Bioluminescence Imaging. , 2017, Journal of the American Chemical Society.

[65]  S. Gambhir,et al.  Nanomaterials for In Vivo Imaging. , 2017, Chemical reviews.

[66]  Hongjie Dai,et al.  Near-infrared fluorophores for biomedical imaging , 2017, Nature Biomedical Engineering.

[67]  A. Roda,et al.  Synthesis of 1,2-Dioxetanes as Thermochemiluminescent Labels for Ultrasensitive Bioassays: Rational Prediction of Olefin Photooxygenation Outcome by Using a Chemometric Approach. , 2016, Chemistry.

[68]  Fei Ma,et al.  Fluorescent Biosensors Based on Single-Molecule Counting. , 2016, Accounts of chemical research.

[69]  Haruki Niwa,et al.  A luciferin analogue generating near-infrared bioluminescence achieves highly sensitive deep-tissue imaging , 2016, Nature Communications.

[70]  Jia Liu,et al.  Observation of Local Redox Events at Individual Au Nanoparticles Using Electrogenerated Chemiluminescence Microscopy , 2015 .

[71]  Chuancheng Jia,et al.  Carbon Electrode-Molecule Junctions: A Reliable Platform for Molecular Electronics. , 2015, Accounts of chemical research.

[72]  J. E. Dick,et al.  Observation of Single-Protein and DNA Macromolecule Collisions on Ultramicroelectrodes. , 2015, Journal of the American Chemical Society.

[73]  Gary W Brudvig,et al.  Experimental Support for a Single Electron-Transfer Oxidation Mechanism in Firefly Bioluminescence. , 2015, Journal of the American Chemical Society.

[74]  P. Ryan,et al.  Self-illuminating quantum dots for non-invasive bioluminescence imaging of mammalian gametes , 2015, Journal of Nanobiotechnology.

[75]  Byeong-Cheol Ahn,et al.  In Vivo Cell Tracking with Bioluminescence Imaging , 2015, Nuclear Medicine and Molecular Imaging.

[76]  A. Roda,et al.  Organically modified silica nanoparticles doped with new acridine-1,2-dioxetane analogues as thermochemiluminescence reagentless labels for ultrasensitive immunoassays , 2015, Analytical and Bioanalytical Chemistry.

[77]  Jennifer A. Prescher,et al.  A synthetic luciferin improves bioluminescence imaging in live mice , 2014, Nature Methods.

[78]  A. Roda,et al.  Preparation and characterization of thermochemiluminescent acridine-containing 1,2-dioxetanes as promising ultrasensitive labels in bioanalysis. , 2013, The Journal of organic chemistry.

[79]  Fan Zhang,et al.  Longitudinal Bioluminescence Imaging of the Dynamics of Doxorubicin Induced Apoptosis , 2013, Theranostics.

[80]  Takako Noguchi,et al.  Cellular bioluminescence imaging. , 2012, Cold Spring Harbor protocols.

[81]  H. Shiku,et al.  Topographical and electrochemical nanoscale imaging of living cells using voltage-switching mode scanning electrochemical microscopy , 2012, Proceedings of the National Academy of Sciences.

[82]  Zhen Cheng,et al.  In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. , 2012, Angewandte Chemie.

[83]  Christian E Badr,et al.  Bioluminescence imaging: progress and applications. , 2011, Trends in biotechnology.

[84]  A. Tsourkas,et al.  Firefly Luciferase and Rluc8 Exhibit Differential Sensitivity to Oxidative Stress in Apoptotic Cells , 2011, PloS one.

[85]  Tingting Xu,et al.  In Vivo Bioluminescent Imaging (BLI): Noninvasive Visualization and Interrogation of Biological Processes in Living Animals , 2010, Sensors.

[86]  Kwangmeyung Kim,et al.  Chemiluminescence‐Generating Nanoreactor Formulation for Near‐Infrared Imaging of Hydrogen Peroxide and Glucose Level in vivo , 2010 .

[87]  William M Gallagher,et al.  Bioluminescent imaging: a critical tool in pre‐clinical oncology research , 2010, The Journal of pathology.

[88]  Joseph C. Wu,et al.  Long term non-invasive imaging of embryonic stem cells using reporter genes , 2009, Nature Protocols.

[89]  Robin S. Dothager,et al.  Advances in bioluminescence imaging of live animal models. , 2009, Current opinion in biotechnology.

[90]  Hugh A. Bruck,et al.  Carbon nanotubes with enhanced chemiluminescence immunoassay for CCD-based detection of Staphylococcal enterotoxin B in food. , 2008, Analytical chemistry.

[91]  L. Lilge,et al.  The influence of hypoxia on bioluminescence in luciferase-transfected gliosarcoma tumor cells in vitro , 2008, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[92]  G. Luker,et al.  Applications of bioluminescence imaging to antiviral research and therapy: multiple luciferase enzymes and quantitation. , 2008, Antiviral research.

[93]  Tin-Yun Ho,et al.  Noninvasive nuclear factor-kappaB bioluminescence imaging for the assessment of host-biomaterial interaction in transgenic mice. , 2007, Biomaterials.

[94]  Bo Huang,et al.  Counting Low-Copy Number Proteins in a Single Cell , 2007, Science.

[95]  Elisa Michelini,et al.  Bio- and chemiluminescence imaging in analytical chemistry , 2005 .

[96]  S. Gambhir,et al.  Molecular imaging in living subjects: seeing fundamental biological processes in a new light. , 2003, Genes & development.

[97]  W. Baeyens,et al.  Principles and recent analytical applications of chemiluminescence. , 2000 .

[98]  A. M. García-Campaña,et al.  Recent Developments and Applications of Chemiluminescence Sensors , 2000 .

[99]  A. Roda,et al.  Chemiluminescent imaging of enzyme-labeled probes using an optical microscope-videocamera luminograph. , 1998, Analytical biochemistry.

[100]  A. Roda,et al.  Chemiluminescent low-light imaging of biospecific reactions on macro- and microsamples using a videocamera-based luminograph. , 1996, Analytical chemistry.

[101]  M. J. Cormier,et al.  Isolation and expression of a cDNA encoding Renilla reniformis luciferase. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[102]  I. Weeks,et al.  Effect of surfactants on the intensity of chemiluminescence emission from acridinium ester labelled proteins. , 1988, Journal of bioluminescence and chemiluminescence.

[103]  K. Wood,et al.  Firefly luciferase gene: structure and expression in mammalian cells , 1987, Molecular and cellular biology.

[104]  O. Shimomura,et al.  Properties and reaction mechanism of the bioluminescence system of the deep-sea shrimp Oplophorus gracilorostris. , 1978, Biochemistry.

[105]  F. McCapra,et al.  Chemical mechanisms in bioluminescence , 1976 .

[106]  N. Turro,et al.  Tetramethyl-1,2-dioxetane. Experiments in chemiexcitation, chemiluminescence, photochemistry, chemical dynamics, and spectroscopy , 1974 .

[107]  Emil H. White,et al.  THE STRUCTURE AND SYNTHESIS OF FIREFLY LUCIFERIN , 1961 .

[108]  K. Gleu,et al.  Die Chemiluminescenz der Dimethyl‐diacridyliumsalze , 1935 .

[109]  OUP accepted manuscript , 2022, Journal of Biochemistry (Tokyo).

[110]  Kyung-jin Lee,et al.  Bioluminescence Imaging of Matrix Metalloproteinases-2 and -9 Activities in Ethanol-injured Cornea of Mice , 2021, In Vivo.

[111]  Minyong Li,et al.  Bioluminescence probe for γ-glutamyl transpeptidase detection in vivo. , 2018, Bioorganic & medicinal chemistry.

[112]  C. Badr Bioluminescent Imaging , 2014, Methods in Molecular Biology.

[113]  Jung-Joon Min,et al.  Quantitative bioluminescence imaging of tumor-targeting bacteria in living animals , 2008, Nature Protocols.

[114]  C. Contag,et al.  Advances in in vivo bioluminescence imaging of gene expression. , 2002, Annual review of biomedical engineering.

[115]  Eilhard Wiedemann,et al.  Ueber Fluorescenz und Phosphorescenz I. Abhandlung , 1888 .