Accurate approximations of density functional theory for large systems with applications to defects in crystalline solids

This chapter presents controlled approximations of Kohn-Sham density functional theory (DFT) that enable very large scale simulations. The work is motivated by the study of defects in crystalline solids, though the ideas can be used in other applications. The key idea is to formulate DFT as a minimization problem over the density operator, and to cast spatial and spectral discretization as systematically convergent approximations. This enables efficient and adaptive algorithms that solve the equations of DFT with no additional modeling, and up to desired accuracy, for very large systems, with linear and sublinear scaling. Various approaches based on such approximations are presented, and their numerical performance demonstrated through selected examples. These examples also provide important insight about the mechanics and physics of defects in crystalline solids.

[1]  E. Cancès,et al.  Existence of minimizers for Kohn-Sham models in quantum chemistry , 2009 .

[2]  Hong Guo,et al.  RESCU: A real space electronic structure method , 2015, J. Comput. Phys..

[3]  M. Ortiz,et al.  A Variational Framework for Spectral Approximations of Kohn–Sham Density Functional Theory , 2016 .

[4]  G. Galli,et al.  Spin–spin interactions in defects in solids from mixed all-electron and pseudopotential first-principles calculations , 2021, npj Computational Materials.

[5]  V. Gavini,et al.  Configurational forces in electronic structure calculations using Kohn-Sham density functional theory , 2017, 1712.05535.

[6]  Joost VandeVondele,et al.  cp2k: atomistic simulations of condensed matter systems , 2014 .

[7]  K. Bhattacharya,et al.  Spectral quadrature for the first principles study of crystal defects: Application to magnesium , 2020, J. Comput. Phys..

[8]  Noam Bernstein,et al.  Spanning the length scales in dynamic simulation , 1998 .

[9]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[10]  Noam Bernstein,et al.  Hybrid atomistic simulation methods for materials systems , 2009 .

[11]  Colombo,et al.  Efficient linear scaling algorithm for tight-binding molecular dynamics. , 1994, Physical review letters.

[12]  Tjerk P. Straatsma,et al.  NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations , 2010, Comput. Phys. Commun..

[13]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[14]  Phanish Suryanarayana,et al.  Spectral Quadrature method for accurate O(N) electronic structure calculations of metals and insulators , 2016, Comput. Phys. Commun..

[15]  Phani Motamarri,et al.  Subquadratic-scaling subspace projection method for large-scale Kohn-Sham density functional theory calculations using spectral finite-element discretization , 2014, 1406.2600.

[16]  Y. Saad,et al.  PARSEC – the pseudopotential algorithm for real‐space electronic structure calculations: recent advances and novel applications to nano‐structures , 2006 .

[17]  C. Janot,et al.  Vacancy-Formation Energy and Entropy in Magnesium Single Crystals , 1970 .

[18]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[19]  J. Mixter Fast , 2012 .

[20]  S. Hyodo,et al.  Gaussian finite-element mixed-basis method for electronic structure calculations , 2005 .

[21]  Phanish Suryanarayana,et al.  SQDFT: Spectral Quadrature method for large-scale parallel O(N) Kohn-Sham calculations at high temperature , 2017, Comput. Phys. Commun..

[22]  Y. Saad,et al.  Parallel self-consistent-field calculations via Chebyshev-filtered subspace acceleration. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Kohn,et al.  Density functional and density matrix method scaling linearly with the number of atoms. , 1996, Physical review letters.

[24]  Vikram Gavini,et al.  Large-scale all-electron density functional theory calculations using an enriched finite-element basis , 2016, 1610.02121.

[25]  Walter Van Assche,et al.  Pade and Hermite-Pade approximation and orthogonality , 2006, math/0609094.

[26]  Matthias Scheffler,et al.  Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..

[27]  W. Kohn,et al.  Nearsightedness of electronic matter. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[28]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[29]  Kaushik Bhattacharya,et al.  Quasi-continuum orbital-free density-functional theory : A route to multi-million atom non-periodic DFT calculation , 2007 .

[30]  Georges Teyssot Crystals , 2013, Metaphors in Architecture and Urbanism.

[31]  John E. Pask,et al.  Partition of unity finite element method for quantum mechanical materials calculations , 2016, 1611.00731.

[32]  Phanish Suryanarayana,et al.  Development of a Multiphase Beryllium Equation of State and Physics-based Variations. , 2021, The journal of physical chemistry. A.

[33]  Michele Benzi,et al.  Decay Properties of Spectral Projectors with Applications to Electronic Structure , 2012, SIAM Rev..

[34]  Aihui Zhou,et al.  Adaptive Finite Element Approximations for Kohn-Sham Models , 2013, Multiscale Model. Simul..

[35]  Phanish Suryanarayana On nearsightedness in metallic systems for O ( N ) Density Functional Theory calculations: A case study on aluminum , 2017, 1703.01722.

[36]  G. Revel,et al.  The Formation Energy of Vacancies in Aluminium and Magnesium , 1976 .

[37]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[38]  J. Pask,et al.  Finite element methods in ab initio electronic structure calculations , 2005 .

[39]  C. Y. Fong,et al.  Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach , 1999, cond-mat/9903313.

[40]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[41]  William A. Curtin,et al.  Multiscale quantum/atomistic coupling using constrained density functional theory , 2013 .

[42]  D. Hamann Optimized norm-conserving Vanderbilt pseudopotentials , 2013, 1306.4707.

[43]  Phanish Suryanarayana,et al.  Optimized purification for density matrix calculation , 2013 .

[44]  Arash A. Mostofi,et al.  ONETEP: linear‐scaling density‐functional theory with local orbitals and plane waves , 2006 .

[45]  G. Galli,et al.  All-electron density functional calculations for electron and nuclear spin interactions in molecules and solids , 2019, Physical Review Materials.

[46]  J. Hillairet,et al.  Energie de formation et concentration d'équilibre des lacunes dans le magnésium , 1967 .

[47]  Vikram Gavini,et al.  DFT-FE - A massively parallel adaptive finite-element code for large-scale density functional theory calculations , 2019, Comput. Phys. Commun..

[48]  Phanish Suryanarayana,et al.  Real-space formulation of the stress tensor for O(N) density functional theory: Application to high temperature calculations. , 2020, The Journal of chemical physics.

[49]  Lloyd N. Trefethen,et al.  Is Gauss Quadrature Better than Clenshaw-Curtis? , 2008, SIAM Rev..

[50]  Anders M.N. Niklasson Implicit purification for temperature-dependent density matrices , 2003 .

[51]  V. Gavini,et al.  Fast and robust all-electron density functional theory calculations in solids using orthogonalized enriched finite elements , 2020, Physical Review B.

[52]  Paul Steinmann,et al.  On the adaptive finite element analysis of the Kohn–Sham equations: methods, algorithms, and implementation , 2016 .

[53]  J. Bogdanoff,et al.  On the Theory of Dislocations , 1950 .

[54]  Tsukada,et al.  Adaptive finite-element method for electronic-structure calculations. , 1996, Physical review. B, Condensed matter.

[55]  David J. Singh Planewaves, Pseudopotentials, and the LAPW Method , 1993 .

[56]  Matrices , 2019, Numerical C.

[57]  Sergey Pavlovich Suetin,et al.  Padé approximants and efficient analytic continuation of a power series , 2002 .

[58]  Chen Huang,et al.  PAPER www.rsc.org/pccp | Physical Chemistry Chemical Physics Transferable local pseudopotentials for magnesium, aluminum and silicon , 2008 .

[59]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[60]  Li,et al.  Density-matrix electronic-structure method with linear system-size scaling. , 1993, Physical review. B, Condensed matter.

[61]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[62]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[63]  M. Schweitzer,et al.  Orbital-enriched flat-top partition of unity method for the Schrödinger eigenproblem , 2018, Computer Methods in Applied Mechanics and Engineering.

[64]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[65]  Phanish Suryanarayana,et al.  SPARC: Accurate and efficient finite-difference formulation and parallel implementation of Density Functional Theory: Extended systems , 2016, Comput. Phys. Commun..

[66]  Phanish Suryanarayana,et al.  SPARC: Accurate and efficient finite-difference formulation and parallel implementation of Density Functional Theory: Isolated clusters , 2016, Comput. Phys. Commun..

[67]  Spectrum-splitting approach for Fermi-operator expansion in all-electron Kohn-Sham DFT calculations , 2016, 1608.07865.

[68]  N. Higham,et al.  Computing A, log(A) and Related Matrix Functions by Contour Integrals , 2007 .

[69]  Chao Yang,et al.  Accelerating atomic orbital-based electronic structure calculation via pole expansion and selected inversion , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[70]  Sohrab Ismail-Beigi,et al.  New algebraic formulation of density functional calculation , 2000 .

[71]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[72]  Phanish Suryanarayana,et al.  On spectral quadrature for linear-scaling Density Functional Theory , 2013 .

[73]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[74]  Toshio Mura,et al.  Micromechanics of defects in solids , 1982 .

[75]  Yousef Saad,et al.  Self-consistent-field calculations using Chebyshev-filtered subspace iteration , 2006, J. Comput. Phys..

[76]  Lin H. Yang,et al.  Equation of state of boron nitride combining computation, modeling, and experiment , 2019, Physical Review B.

[77]  M. Teter,et al.  Tight-binding electronic-structure calculations and tight-binding molecular dynamics with localized orbitals. , 1994, Physical review. B, Condensed matter.

[78]  M. Ortiz,et al.  An analysis of the quasicontinuum method , 2001, cond-mat/0103455.

[79]  Kaushik Bhattacharya,et al.  Large scale ab-initio simulations of dislocations , 2019, J. Comput. Phys..

[80]  C. Woodward First-principles simulations of dislocation cores , 2005 .

[81]  E Weinan,et al.  Linear-scaling subspace-iteration algorithm with optimally localized nonorthogonal wave functions for Kohn-Sham density functional theory , 2009 .

[82]  Martin Head-Gordon,et al.  Chebyshev expansion methods for electronic structure calculations on large molecular systems , 1997 .

[83]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[84]  K. Burke Perspective on density functional theory. , 2012, The Journal of chemical physics.

[85]  M. Ortiz,et al.  A sublinear-scaling approach to density-functional-theory analysis of crystal defects , 2016 .

[86]  Phanish Suryanarayana,et al.  Coarse-graining Kohn-Sham Density Functional Theory , 2012, 1208.1589.

[87]  G. Golub,et al.  Matrices, Moments and Quadrature with Applications , 2009 .

[88]  Phanish Suryanarayana,et al.  M-SPARC: Matlab-Simulation Package for Ab-initio Real-space Calculations , 2019, SoftwareX.

[89]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[90]  Vikram Gavini,et al.  Higher-order adaptive finite-element methods for Kohn-Sham density functional theory , 2012, J. Comput. Phys..

[91]  L. Trefethen Is Gauss Quadrature Better than Clenshaw–Curtis? | SIAM Review | Vol. 50, No. 1 | Society for Industrial and Applied Mathematics , 2008 .