Resolved [CII] emission in a lensed quasar at z = 4.4

We present one of the first resolved maps of the [CII] 158 µm line, a powerful tracer of the star forming inter-stellar m edium, at high redshift. We use the new IRAM PdBI receivers at 350 GHz to map this line in BRI 0952-0115, the host galaxy of a lensed quasar at z=4.4 previously found to be very bright in [CII] emission. The [CII] emission is clearly resolved and our data allow us to resolve two [CII] lensed images associated with the optical quasar images. We find that the star formation, as traced by [CII], is dist ributed over a region of about 1 kpc in size near the quasar nucleus, and we infer a star formation surface density& 150 M⊙ yr −1 kpc −2 , similar to that observed in local ULIRGs. We also reveal another [CII] component, extended over∼12 kpc, and located at about 10 kpc from the quasar. We suggest that this component is a companion disk galaxy, in the process of merging with the quasar host, whose rotation field is distorted by the interaction with the quasa r host, and where star formation, although intense, is more diffuse. These observations suggest that galaxy merging at high-z can enhance star formation at the same time in the form of more compact regions, in the vicinity of the accreting black hole, and in more extended star forming galaxies.

[1]  A. Marconi,et al.  Observational evidence of quasar feedback quenching star formation at high redshift , 2011, 1112.3071.

[2]  D. H. Hughes,et al.  GAS AND DUST IN A SUBMILLIMETER GALAXY AT z = 4.24 FROM THE HERSCHEL ATLAS , 2011, 1107.2924.

[3]  S. Maddox,et al.  Physical conditions of the interstellar medium of high-redshift, strongly lensed submillimetre galaxies from the Herschel-ATLAS★ , 2011, Monthly Notices of the Royal Astronomical Society.

[4]  D. Calzetti,et al.  GOODS–Herschel: an infrared main sequence for star-forming galaxies , 2011, 1105.2537.

[5]  C. Breuck,et al.  Enhanced [CII] emission in a z = 4.76 submillimetre galaxy , 2011, 1104.5250.

[6]  F. Walter,et al.  [CII] line emission in BRI 1335-0417 at z = 4.4 , 2010, 1008.1578.

[7]  K. Coppin,et al.  Herschel and SCUBA-2 imaging and spectroscopy of a bright, lensed submillimetre galaxy at z = 2.3 , 2010, 1005.1071.

[8]  C. Tucker,et al.  DETECTION OF THE 158 μm [C ii] TRANSITION AT z = 1.3: EVIDENCE FOR A GALAXY-WIDE STARBURST , 2010, 1003.2174.

[9]  C. Steidel,et al.  THE STRUCTURE AND KINEMATICS OF THE CIRCUMGALACTIC MEDIUM FROM FAR-ULTRAVIOLET SPECTRA OF z ≃ 2–3 GALAXIES , 2010, 1003.0679.

[10]  C. De Breuck,et al.  Strong (CII) emission at high redshift , 2009, 0904.3793.

[11]  F. Walter,et al.  A kiloparsec-scale hyper-starburst in a quasar host less than 1 gigayear after the Big Bang , 2009, Nature.

[12]  I. Smail,et al.  Interferometric imaging of the high-redshift radio galaxy, 4C 60.07: an SMA, Spitzer and VLA study reveals a binary AGN/starburst , 2008, 0808.2188.

[13]  R. Maiolino,et al.  Prospects for AGN studies with ALMA , 2008, 0806.0695.

[14]  R. Siebenmorgen,et al.  Nuclear activity in nearby galaxies - Mid-infrared imaging with the VLT , 2008, 0805.3255.

[15]  P. Andreani,et al.  Star Formation in the Hosts of High-z QSOs: Evidence from Spitzer PAH Detections , 2008, 0805.2669.

[16]  O. Fèvre,et al.  Spectral Energy Distributions of Hard X-Ray Selected Active Galactic Nuclei in the XMM-Newton Medium Deep Survey , 2007 .

[17]  D. Iono,et al.  A Detection of [C II] Line Emission in the z = 4.7 QSO BR 1202–0725 , 2006, astro-ph/0606043.

[18]  Anton M. Koekemoer,et al.  The 2005 HST Calibration Workshop Hubble After the Transition to Two-Gyro Mode , 2006 .

[19]  G. Meylan,et al.  COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses VI. Redshift of the lensing galaxy in seven gravitationally lensed quasars , 2005, astro-ph/0612419.

[20]  A. Weiss,et al.  First detection of [CII]158 μm at high redshift : vigorous star formation in the early universe , 2005, astro-ph/0508064.

[21]  M. Wolfire,et al.  The [C II] 158 Micron Line Deficit in Ultraluminous Infrared Galaxies Revisited , 2003, astro-ph/0305520.

[22]  T. Onaka,et al.  Global physical conditions of the interstellar medium in nearby galaxies , 2001, astro-ph/0107019.

[23]  S. Malhotra,et al.  Far-Infrared Spectroscopy of Normal Galaxies: Physical Conditions in the Interstellar Medium , 2001, astro-ph/0106485.

[24]  Cambridge,et al.  The far-infrared-submillimetre spectral energy distribution of high-redshift quasars -- , 2001, astro-ph/0102116.

[25]  J. Lehár,et al.  Hubble Space Telescope Observations of 10 Two-Image Gravitational Lenses , 1999 .

[26]  NASA Ames Research Center,et al.  Far-Infrared and Submillimeter Emission from Galactic and Extragalactic Photodissociation Regions , 1999, astro-ph/9907255.

[27]  R. McMahon,et al.  Submillimetre observations of luminous z>4 radio-quiet quasars and the contribution of AGN to the submm source population , 1999, astro-ph/9907239.

[28]  P. Cox,et al.  Infrared Space Observatory Measurements of a [C II] 158 Micron Line Deficitin Ultraluminous Infrared Galaxies , 1998 .

[29]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[30]  D. Sanders,et al.  LUMINOUS INFRARED GALAXIES , 1996 .

[31]  Charles L. Bennett,et al.  Preliminary spectral observations of the Galaxy with a 7 deg beam by the Cosmic Background Explorer (COBE) , 1991 .

[32]  A. Poglitsch,et al.  The 158 micron forbidden C II line - A measure of global star formation activity in galaxies , 1991 .

[33]  Charles H. Townes,et al.  Far-infrared spectroscopy of galaxies - The 158 micron C(+) line and the energy balance of molecular clouds , 1985 .

[34]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2011 .