Effect of hyperbaric oxygen on MMP9/2 expression and motor function in rats with spinal cord injury.

To study the effect of hyperbaric oxygen intervention on the microenvironment of nerve regeneration after spinal cord injury modeling and to explore the possible mechanism of nerve regeneration and functional recovery in rats with spinal cord injury. In 98 adult female SD rats, 90 successful models were obtained, which were divided into sham group, spinal cord injury group and hyperbaric oxygen group using randomized block method, 30/group. Spinal cord injury rat model was established in accordance with the modified Allen method. Motor function was assessed at the time points of before modeling, one day, three days, one week, two weeks, three weeks and four weeks after modeling respectively by BBB rating, inclined plane test and improved Tarlov score. At 3 days after modeling, apoptosis of neuronal cells in spinal cord injury region in experimental group was detected by TUNEL method; gene and protein expression of MMP9/2 in spinal cord injury and surrounding tissues was detected by RT-PCR and Western blot assay. At 4 weeks after modeling, histopathological morphological changes in spinal cord injury were observed by HE staining; fluorogold retrograde tracing was used to observe the regeneration and distribution of spinal cord nerve fibers and axon regeneration was observed by TEM. The three motor function scores in hyperbaric oxygen group at each time point after two weeks of treatment were significantly increased compared with spinal cord injury group (P < 0.05). At 3 d after modeling, apoptosis index in hyperbaric oxygen group were significantly lower than those in spinal cord injury group (P < 0.05). At 72 h after modeling, compared with spinal cord injury group, MMP9/2 gene and protein expression in hyperbaric oxygen group was significantly lower (P < 0.05). At four weeks after modeling, fluorogold positive nerve fibers were the most sham group, followed by hyperbaric oxygen group and spinal cord injury group in order; the differences among the groups were statistically significant (P < 0.05). Under TEM, newborn unmyelinated and myelinated nerve fibers could be observed in the middle cross-section in the sham group and hyperbaric oxygen group; unmyelinated and myelinated nerve fibers in hyperbaric oxygen group were more than those in spinal cord injury group. Hyperbaric oxygen therapy played a protective effect on spinal cord injury through reducing apoptosis of neuronal cells and expression of MMP9/2 gene and protein in rats with spinal cord injury.