Statistical Learning for Effective Visual

For effective retrieval of visual information, statistical learning plays a pivotal role. Statistical learning in such a context faces at least two major mathematical challenges: scarcity of training data, and imbalance of training classes. We present these challenges and outline our methods for addressing them: active learning, recursive subspace co-training, adaptive dimensionality reduction, class-boundary alignment, and quasi-bagging.

[1]  Mary Czerwinski,et al.  Semi-Automatic Image Annotation , 2001, INTERACT.

[2]  Edward Y. Chang,et al.  Adaptive Feature-Space Conformal Transformation for Imbalanced-Data Learning , 2003, ICML.

[3]  David L. Donoho,et al.  Aide-Memoire . High-Dimensional Data Analysis : The Curses and Blessings of Dimensionality , 2000 .

[4]  Edward Y. Chang,et al.  Learning image query concepts via intelligent sampling , 2001, IEEE International Conference on Multimedia and Expo, 2001. ICME 2001..

[5]  Edward Y. Chang,et al.  Mining image features for efficient query processing , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[6]  Edward Y. Chang,et al.  Hybrid Learning Schemes for Multimedia Information Retrieval , 2002, IEEE Pacific Rim Conference on Multimedia.

[7]  Edward Y. Chang,et al.  DynDex: a dynamic and non-metric space indexer , 2002, MULTIMEDIA '02.

[8]  Edward Y. Chang,et al.  PBIR-MM: multimodal image retrieval and annotation , 2002, MULTIMEDIA '02.

[9]  Edward Y. Chang,et al.  Effective image annotation via active learning , 2002, Proceedings. IEEE International Conference on Multimedia and Expo.

[10]  Edward Y. Chang,et al.  CBSA: content-based soft annotation for multimodal image retrieval using Bayes point machines , 2003, IEEE Trans. Circuits Syst. Video Technol..

[11]  Edward Y. Chang,et al.  Discovery of a perceptual distance function for measuring image similarity , 2003, Multimedia Systems.

[12]  Avrim Blum,et al.  The Bottleneck , 2021, Monopsony Capitalism.

[13]  Edward Y. Chang,et al.  Support vector machine active learning for image retrieval , 2001, MULTIMEDIA '01.