A membrane model for the response of thin plates to ballistic impact

Abstract T he axisymmetric response of an infinite plate to an impacting projectile is determined analytically on the hypothesis that, for large deformations, a ductile plate behaves to a good approximation like a membrane under uniform tension. The lowest projectile velocity that results in perforation (the ballistic limit), and the residual velocity after perforation, then are determined on the basis of a critical-strain failure criterion. A figure of merit that depends only on the material properties of the target and characterizes the resistance of the material to impact appears naturally in the analysis. Variations in the ballistic limit with target thickness and projectile dimensions can be determined when this figure of merit is known. The theoretical ballistic limit and residual velocity for a steel cylinder impacting a titanium plate are found to agree with available measured values. Further support for the membrane model and an estimate of its range of validity are obtained by comparing the maximum displacement of an impulsively-loaded, circular membrane with experimental data for circular plates.