General Strategies for Nanoparticle Dispersion

Traditionally the dispersion of particles in polymeric materials has proven difficult and frequently results in phase separation and agglomeration. We show that thermodynamically stable dispersion of nanoparticles into a polymeric liquid is enhanced for systems where the radius of gyration of the linear polymer is greater than the radius of the nanoparticle. Dispersed nanoparticles swell the linear polymer chains, resulting in a polymer radius of gyration that grows with the nanoparticle volume fraction. It is proposed that this entropically unfavorable process is offset by an enthalpy gain due to an increase in molecular contacts at dispersed nanoparticle surfaces as compared with the surfaces of phase-separated nanoparticles. Even when the dispersed state is thermodynamically stable, it may be inaccessible unless the correct processing strategy is adopted, which is particularly important for the case of fullerene dispersion into linear polymers.

[1]  C. Han,et al.  Chain Dimensions in Polysilicate-Filled Poly(Dimethyl Siloxane) , 2000 .

[2]  J. Fischer,et al.  Coagulation method for preparing single‐walled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability , 2003 .

[3]  Ho-Cheol Kim,et al.  Nanoscale effects leading to non-Einstein-like decrease in viscosity , 2003, Nature materials.

[4]  S. Seifert,et al.  Solution structure of copper ion-induced molecular aggregates of tyrosine melanin. , 1999, Biophysical journal.

[5]  L. H. Cragg,et al.  The Fractionation of High-Polymeric Substances. , 1946 .

[6]  A. Balazs,et al.  Thermodynamic Behavior of Particle/Diblock Copolymer Mixtures: Simulation and Theory , 2000 .

[7]  J. Tour,et al.  The influence of Buckminsterfullerenes and their derivatives on polymer properties , 1999 .

[8]  Alan J. Heeger,et al.  Photophysics of semiconducting polymer- C60 composites: a comparative study , 1994 .

[9]  David S. Germack,et al.  A facile approach to architecturally defined nanoparticles via intramolecular chain collapse. , 2002, Journal of the American Chemical Society.

[10]  G. Carmezini,et al.  On the Surface Properties of Hyperbranched Polymers , 2001 .

[11]  M. Vacatello Chain Dimensions in Filled Polymers: An Intriguing Problem , 2002 .

[12]  A. Balazs,et al.  Predicting the Mesophases of Copolymer-Nanoparticle Composites , 2001, Science.

[13]  L. Utracki,et al.  Polymer Alloys and Blends , 1990 .

[14]  Todd Emrick,et al.  Self-directed self-assembly of nanoparticle/copolymer mixtures , 2005, Nature.

[15]  D. V. Krevelen,et al.  Properties of polymers, their estimation and correlation with chemical structure , 1972 .

[16]  K. Schweizer,et al.  Structure, surface excess and effective interactions in polymer nanocomposite melts and concentrated solutions. , 2004, The Journal of chemical physics.

[17]  Andrea J. Liu,et al.  Jamming at zero temperature and zero applied stress: the epitome of disorder. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  V. Ginzburg Influence of Nanoparticles on Miscibility of Polymer Blends. A Simple Theory , 2005 .

[19]  Wilson C. K. Poon,et al.  TOPICAL REVIEW: The physics of a model colloid-polymer mixture , 2002 .

[20]  K. Schweizer,et al.  Contact Aggregation, Bridging, and Steric Stabilization in Dense Polymer−Particle Mixtures , 2005 .

[21]  V. Cabuil,et al.  Neutron reflectivity studies of composite nanoparticle – copolymer thin films , 1998 .

[22]  L. Utracki,et al.  Linear low density polyethylenes and their blends: Part 4 shear flow of LLDPE blends with LLDPE and LDPE , 1987 .

[23]  K.F. Schoch,et al.  Standard Pressure-volume-temperature data for Polymers , 1996, IEEE Electrical Insulation Magazine.

[24]  McLain,et al.  Chain walking: A new strategy to control polymer topology , 1999, Science.

[25]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[26]  J. Haas,et al.  Experimenteller nachweis des molekulardispersen charakters der mischung von zwei polymeren und bestimmung des chemischen potentials in diesen mischungen , 1976 .

[27]  Bates,et al.  Isotope-induced quantum-phase transitions in the liquid state. , 1986, Physical review letters.

[28]  A. Mayes,et al.  Anomalous Adsorption of Polyelectrolyte Layers , 2001 .

[29]  Z. Guan Control of polymer topology through late-transition-metal catalysis , 2003 .

[30]  J. E. Mark,et al.  Monte Carlo simulations on the effects of nanoparticles on chain deformations and reinforcement in amorphous polyethylene networks , 2004 .

[31]  M. V. Okun,et al.  Fullerenes in solutions , 1998 .