Milky Way Satellite Census. I. The Observational Selection Function for Milky Way Satellites in DES Y3 and Pan-STARRS DR1

We report the results of a systematic search for ultra-faint Milky Way satellite galaxies using data from the Dark Energy Survey (DES) and Pan-STARRS1 (PS1). Together, DES and PS1 provide multi-band photometry in optical/near-infrared wavelengths over ∼80% of the sky. Our search for satellite galaxies targets ∼25,000 deg2 of the high-Galactic-latitude sky reaching a 10σ point-source depth of ≳22.5 mag in the g and r bands. While satellite galaxy searches have been performed independently on DES and PS1 before, this is the first time that a self-consistent search is performed across both data sets. We do not detect any new high-significance satellite galaxy candidates, recovering the majority of satellites previously detected in surveys of comparable depth. We characterize the sensitivity of our search using a large set of simulated satellites injected into the survey data. We use these simulations to derive both analytic and machine-learning models that accurately predict the detectability of Milky Way satellites as a function of their distance, size, luminosity, and location on the sky. To demonstrate the utility of this observational selection function, we calculate the luminosity function of Milky Way satellite galaxies, assuming that the known population of satellite galaxies is representative of the underlying distribution. We provide access to our observational selection function to facilitate comparisons with cosmological models of galaxy formation and evolution.

[1]  S. Majewski,et al.  Two Ultra-faint Milky Way Stellar Systems Discovered in Early Data from the DECam Local Volume Exploration Survey , 2019, The Astrophysical Journal.

[2]  M. Walker,et al.  Stellar Density Profiles of Dwarf Spheroidal Galaxies , 2019, The Astrophysical Journal.

[3]  C. Frenk,et al.  The little things matter: relating the abundance of ultrafaint satellites to the hosts’ assembly history , 2019, Monthly Notices of the Royal Astronomical Society.

[4]  J. Devriendt,et al.  How to quench a dwarf galaxy: The impact of inhomogeneous reionization on dwarf galaxies and cosmic filaments , 2019, Monthly Notices of the Royal Astronomical Society.

[5]  R. J. Wainscoat,et al.  The Pan-STARRS1 Database and Data Products , 2016, The Astrophysical Journal Supplement Series.

[6]  J.Lee,et al.  THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.

[7]  R. Lupton,et al.  Boötes. IV. A new Milky Way satellite discovered in the Subaru Hyper Suprime-Cam Survey and implications for the missing satellite problem , 2019, Publications of the Astronomical Society of Japan.

[8]  J. Bailin,et al.  A profile in FIRE: resolving the radial distributions of satellite galaxies in the Local Group with simulations , 2019, Monthly Notices of the Royal Astronomical Society.

[9]  Risa H. Wechsler,et al.  Constraints on Dark Matter Microphysics from the Milky Way Satellite Population , 2019, The Astrophysical Journal.

[10]  R. Teyssier,et al.  EDGE: the mass–metallicity relation as a critical test of galaxy formation physics , 2019, Monthly Notices of the Royal Astronomical Society.

[11]  J. Simon,et al.  The Faintest Dwarf Galaxies , 2019, Annual Review of Astronomy and Astrophysics.

[12]  D. Tucker,et al.  A Faint Halo Star Cluster Discovered in the Blanco Imaging of the Southern Sky Survey , 2018, The Astrophysical Journal.

[13]  P. Hopkins,et al.  Be it therefore resolved: cosmological simulations of dwarf galaxies with 30 solar mass resolution , 2018, Monthly Notices of the Royal Astronomical Society.

[14]  M. Boylan-Kolchin,et al.  Phat ELVIS: The inevitable effect of the Milky Way’s disc on its dark matter subhaloes , 2018, Monthly Notices of the Royal Astronomical Society.

[15]  Sergey E. Koposov,et al.  The hidden giant: discovery of an enormous Galactic dwarf satellite in Gaia DR2 , 2018, Monthly Notices of the Royal Astronomical Society.

[16]  K. Holley-Bockelmann,et al.  Dancing in the Dark: Uncertainty in Ultrafaint Dwarf Galaxy Predictions from Cosmological Simulations , 2018, The Astrophysical Journal.

[17]  D. Petravick,et al.  easyaccess: Enhanced SQL command line interpreter for astronomical surveys , 2018, J. Open Source Softw..

[18]  Sergey E. Koposov,et al.  The Morphology and Structure of Stellar Populations in the Fornax Dwarf Spheroidal Galaxy from Dark Energy Survey Data , 2018, The Astrophysical Journal.

[19]  R. Wechsler,et al.  Modeling the Connection between Subhalos and Satellites in Milky Way–like Systems , 2018, The Astrophysical Journal.

[20]  Tucson,et al.  The Faint End of the Centaurus A Satellite Luminosity Function , 2018, The Astrophysical Journal.

[21]  M. Boylan-Kolchin,et al.  How low does it go? Too few Galactic satellites with standard reionization quenching , 2018, Monthly Notices of the Royal Astronomical Society.

[22]  P. Hopkins,et al.  The Local Group on FIRE: dwarf galaxy populations across a suite of hydrodynamic simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[23]  Sergey E. Koposov,et al.  Nine tiny star clusters inGaiaDR1, PS1, and DES , 2018, Monthly Notices of the Royal Astronomical Society.

[24]  Adam D. Myers,et al.  Overview of the DESI Legacy Imaging Surveys , 2018, The Astronomical Journal.

[25]  A. Peter,et al.  Missing Satellites Problem: Completeness Corrections to the Number of Satellite Galaxies in the Milky Way are Consistent with Cold Dark Matter Predictions. , 2018, Physical review letters.

[26]  P. Jablonka,et al.  Pristine dwarf galaxy survey – I. A detailed photometric and spectroscopic study of the very metal-poor Draco II satellite , 2018, Monthly Notices of the Royal Astronomical Society.

[27]  J. Bailin,et al.  A Lonely Giant: The Sparse Satellite Population of M94 Challenges Galaxy Formation , 2018, The Astrophysical Journal.

[28]  S. Djorgovski,et al.  A MegaCam Survey of Outer Halo Satellites. III. Photometric and Structural Parameters , 2018, The Astrophysical Journal.

[29]  J. Frieman,et al.  Star-galaxy classification in the Dark Energy Survey Y1 dataset , 2018, Monthly Notices of the Royal Astronomical Society.

[30]  B. Willman,et al.  A Deeper Look at the New Milky Way Satellites: Sagittarius II, Reticulum II, Phoenix II, and Tucana III , 2018, The Astrophysical Journal.

[31]  Sergey E. Koposov,et al.  Snake in the Clouds: a new nearby dwarf galaxy in the Magellanic bridge* , 2018, Monthly Notices of the Royal Astronomical Society.

[32]  C. Frenk,et al.  The Imprint of Cosmic Reionization on the Luminosity Function of Galaxies , 2018, The Astrophysical Journal.

[33]  Sergey E. Koposov,et al.  Discovery of two neighbouring satellites in the Carina constellation with MagLiteS , 2018, 1801.07279.

[34]  M. Sullivan,et al.  The Dark Energy Survey: Data Release 1 , 2018, The Astrophysical Journal Supplement Series.

[35]  B. Yanny,et al.  The Dark Energy Survey Image Processing Pipeline , 2018, 1801.03177.

[36]  R. Nichol,et al.  Stellar Streams Discovered in the Dark Energy Survey , 2018, The Astrophysical Journal.

[37]  Risa H. Wechsler,et al.  Modeling the Impact of Baryons on Subhalo Populations with Machine Learning , 2017, The Astrophysical Journal.

[38]  J. Garc'ia-Bellido,et al.  Seven hints for primordial black hole dark matter , 2017, Physics of the Dark Universe.

[39]  B. Yanny,et al.  Dark Energy Survey Year 1 Results: The Photometric Data Set for Cosmology , 2017, 1708.01531.

[40]  Yukiko Kamata,et al.  First data release of the Hyper Suprime-Cam Subaru Strategic Program , 2017, 1702.08449.

[41]  M. Schirmer,et al.  On the Nature of Ultra-faint Dwarf Galaxy Candidates. I. DES1, Eridanus III, and Tucana V , 2017, 1712.01439.

[42]  J. Peek,et al.  Where Are All of the Gas-bearing Local Dwarf Galaxies? Quantifying Possible Impacts of Reionization , 2017, 1711.00485.

[43]  B. Willman,et al.  Deep Subaru Hyper Suprime-Cam Observations of Milky Way Satellites Columba I and Triangulum II , 2017, 1710.06444.

[44]  UK.,et al.  The total satellite population of the Milky Way. , 2017, 1708.04247.

[45]  Michael Boylan-Kolchin,et al.  Small-Scale Challenges to the ΛCDM Paradigm , 2017, 1707.04256.

[46]  B. Yanny,et al.  Forward Global Photometric Calibration of the Dark Energy Survey , 2017, 1706.01542.

[47]  R. Lupton,et al.  Searches for New Milky Way Satellites from the First Two Years of Data of the Subaru/Hyper Suprime-Cam Survey: Discovery of Cetus~III , 2017, 1704.05977.

[48]  P. Fosalba,et al.  A stellar overdensity associated with the Small Magellanic Cloud , 2017 .

[49]  Daniel S. Katz,et al.  The Journal of Open Source Software , 2017 .

[50]  M. Boylan-Kolchin,et al.  Local Group Ultra-Faint Dwarf Galaxies in the Reionization Era , 2017, 1702.06129.

[51]  P. Hopkins,et al.  Not so lumpy after all: modelling the depletion of dark matter subhaloes by Milky Way-like galaxies , 2017, 1701.03792.

[52]  V. Belokurov,et al.  The upper bound on the lowest mass halo , 2016, 1612.07834.

[53]  W. M. Wood-Vasey,et al.  The Pan-STARRS1 Surveys , 2016, 1612.05560.

[54]  R. Lupton,et al.  A NEW MILKY WAY SATELLITE DISCOVERED IN THE SUBARU/HYPER SUPRIME-CAM SURVEY , 2016, 1609.04346.

[55]  D. Nidever,et al.  AN ULTRA-FAINT GALAXY CANDIDATE DISCOVERED IN EARLY DATA FROM THE MAGELLANIC SATELLITES SURVEY , 2016, 1609.02148.

[56]  A. Milone,et al.  PORTRAIT OF A DARK HORSE: A PHOTOMETRIC AND SPECTROSCOPIC STUDY OF THE ULTRA-FAINT MILKY WAY SATELLITE PEGASUS III , 2016, 1608.04934.

[57]  D. Gerdes,et al.  The Dark Energy Survey view of the Sagittarius stream: discovery of two faint stellar system candidates , 2016, 1608.04033.

[58]  R. Lupton,et al.  FIRST RESULTS FROM THE MADCASH SURVEY: A FAINT DWARF GALAXY COMPANION TO THE LOW-MASS SPIRAL GALAXY NGC 2403 AT 3.2 MPC , 2016, 1608.02591.

[59]  Sergey E. Koposov,et al.  At the survey limits: discovery of the Aquarius 2 dwarf galaxy in the VST ATLAS and the SDSS data , 2016, 1605.05338.

[60]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[61]  P. Hopkins,et al.  RECONCILING DWARF GALAXIES WITH ΛCDM COSMOLOGY: SIMULATING A REALISTIC POPULATION OF SATELLITES AROUND A MILKY WAY–MASS GALAXY , 2016, 1602.05957.

[62]  N. Tominaga,et al.  WHERE ARE THE LOW-MASS POPULATION III STARS? , 2016, 1602.00465.

[63]  Sergey E. Koposov,et al.  The feeble giant. Discovery of a large and diffuse Milky Way dwarf galaxy in the constellation of Crater , 2016, 1601.07178.

[64]  C. B. D'Andrea,et al.  ASSESSMENT OF SYSTEMATIC CHROMATIC ERRORS THAT IMPACT SUB-1% PHOTOMETRIC PRECISION IN LARGE-AREA SKY SURVEYS , 2016, 1601.00117.

[65]  R. Nichol,et al.  Digging deeper into the Southern skies: a compact Milky Way companion discovered in first-year Dark Energy Survey data , 2015, 1508.02381.

[66]  B. Yanny,et al.  The dark energy survey and operations: years 1 to 3 , 2016, Astronomical Telescopes + Instrumentation.

[67]  Sergey E. Koposov,et al.  A HUBBLE SPACE TELESCOPE STUDY OF THE ENIGMATIC MILKY WAY HALO GLOBULAR CLUSTER CRATER , 2015, 1510.08533.

[68]  H. Jerjen,et al.  New dwarf galaxy candidates in the Centaurus group , 2015, 1509.04931.

[69]  R. Nichol,et al.  THE PHOENIX STREAM: A COLD STREAM IN THE SOUTHERN HEMISPHERE , 2015, 1509.04283.

[70]  R. Keisler,et al.  Assessing Galaxy Limiting Magnitudes in Large Optical Surveys , 2015, 1509.00870.

[71]  G. Fiorentino,et al.  Variable stars in Local Group Galaxies – I. Tracing the early chemical enrichment and radial gradients in the Sculptor dSph with RR Lyrae stars , 2015, 1508.06942.

[72]  B. Yanny,et al.  EIGHT ULTRA-FAINT GALAXY CANDIDATES DISCOVERED IN YEAR TWO OF THE DARK ENERGY SURVEY , 2015, 1508.03622.

[73]  John L. Tonry,et al.  SAGITTARIUS II, DRACO II AND LAEVENS 3: THREE NEW MILKY WAY SATELLITES DISCOVERED IN THE PAN-STARRS 1 3π SURVEY , 2015, 1507.07564.

[74]  J. Simon,et al.  SPECTROSCOPIC CONFIRMATION OF THE DWARF GALAXIES HYDRA II AND PISCES II AND THE GLOBULAR CLUSTER LAEVENS 1 , 2015, 1506.01021.

[75]  H. Jerjen,et al.  HOROLOGIUM II: A SECOND ULTRA-FAINT MILKY WAY SATELLITE IN THE HOROLOGIUM CONSTELLATION , 2015, 1505.04948.

[76]  Benjamin D. Johnson,et al.  The Local Group as a time machine: studying the high-redshift Universe with nearby galaxies , 2015, 1504.06621.

[77]  Irvine,et al.  Sweating the small stuff: simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites , 2015, 1504.02466.

[78]  A. Milone,et al.  A HERO’S DARK HORSE: DISCOVERY OF AN ULTRA-FAINT MILKY WAY SATELLITE IN PEGASUS , 2015, 1503.08268.

[79]  S. Majewski,et al.  HYDRA II: A FAINT AND COMPACT MILKY WAY DWARF GALAXY FOUND IN THE SURVEY OF THE MAGELLANIC STELLAR HISTORY , 2015, 1503.06216.

[80]  H. Rix,et al.  A NEW FAINT MILKY WAY SATELLITE DISCOVERED IN THE PAN-STARRS1 3π SURVEY , 2015, 1503.05554.

[81]  B. Yanny,et al.  EIGHT NEW MILKY WAY COMPANIONS DISCOVERED IN FIRST-YEAR DARK ENERGY SURVEY DATA , 2015, 1503.02584.

[82]  J. Chiang,et al.  Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data. , 2015, Physical review letters.

[83]  Sergey E. Koposov,et al.  BEASTS OF THE SOUTHERN WILD: DISCOVERY OF NINE ULTRA FAINT SATELLITES IN THE VICINITY OF THE MAGELLANIC CLOUDS , 2015, 1503.02079.

[84]  A. Milone,et al.  DISCOVERY OF A FAINT OUTER HALO MILKY WAY STAR CLUSTER IN THE SOUTHERN SKY , 2015, 1502.03952.

[85]  M. Walker,et al.  Comprehensive search for dark matter annihilation in dwarf galaxies , 2014, 1410.2242.

[86]  H. Jerjen,et al.  A HERO'S LITTLE HORSE: DISCOVERY OF A DISSOLVING STAR CLUSTER IN PEGASUS , 2014, 1411.3063.

[87]  H. Ferguson,et al.  THE QUENCHING OF THE ULTRA-FAINT DWARF GALAXIES IN THE REIONIZATION ERA , 2014, 1410.0681.

[88]  D. Malyshev,et al.  Constraints on 3.55 keV line emission from stacked observations of dwarf spheroidal galaxies , 2014, 1408.3531.

[89]  P. Prugniel,et al.  HyperLEDA. III. The catalogue of extragalactic distances , 2014, 1408.3476.

[90]  B. Willman,et al.  TOO MANY, TOO FEW, OR JUST RIGHT? THE PREDICTED NUMBER AND DISTRIBUTION OF MILKY WAY DWARF GALAXIES , 2014, 1407.4470.

[91]  J. Holtzman,et al.  THE STAR FORMATION HISTORIES OF LOCAL GROUP DWARF GALAXIES. II. SEARCHING FOR SIGNATURES OF REIONIZATION , 2014, 1405.3281.

[92]  J. Holtzman,et al.  THE STAR FORMATION HISTORIES OF LOCAL GROUP DWARF GALAXIES. I. HUBBLE SPACE TELESCOPE/WIDE FIELD PLANETARY CAMERA 2 OBSERVATIONS , 2014, 1404.7144.

[93]  E. Sheldon An implementation of Bayesian lensing shear measurement , 2014, 1403.7669.

[94]  H. Rix,et al.  A NEW DISTANT MILKY WAY GLOBULAR CLUSTER IN THE PAN-STARRS1 3π SURVEY , 2014, 1403.6593.

[95]  Sergey E. Koposov,et al.  Discovery of a cold stellar stream in the ATLAS DR1 data , 2014, 1403.3409.

[96]  Sergey E. Koposov,et al.  ATLAS lifts the Cup: discovery of a new Milky Way satellite in Crater , 2014, 1403.3406.

[97]  M. Boylan-Kolchin,et al.  ELVIS: Exploring the Local Volume in Simulations , 2013, 1310.6746.

[98]  M. Boylan-Kolchin,et al.  On the stark difference in satellite distributions around the Milky Way and Andromeda , 2013, 1305.0560.

[99]  R. Kudritzki,et al.  THE ARAUCARIA PROJECT. THE DISTANCE TO THE SMALL MAGELLANIC CLOUD FROM LATE-TYPE ECLIPSING BINARIES , 2013, 1311.2340.

[100]  N. V. Kharchenko,et al.  Global survey of star clusters in the Milky Way II. The catalogue of basic parameters , 2013, 1308.5822.

[101]  Alan W. McConnachie,et al.  THE PAndAS VIEW OF THE ANDROMEDA SATELLITE SYSTEM. I. A BAYESIAN SEARCH FOR DWARF GALAXIES USING SPATIAL AND COLOR–MAGNITUDE INFORMATION , 2013, 1307.7626.

[102]  R. Kudritzki,et al.  An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent , 2013, Nature.

[103]  K. Spekkens,et al.  A DEEP SEARCH FOR EXTENDED RADIO CONTINUUM EMISSION FROM DWARF SPHEROIDAL GALAXIES: IMPLICATIONS FOR PARTICLE DARK MATTER , 2013, 1301.5306.

[104]  M. Irwin,et al.  A vast, thin plane of corotating dwarf galaxies orbiting the Andromeda galaxy , 2013, Nature.

[105]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[106]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[107]  David W. Hogg,et al.  STAR–GALAXY CLASSIFICATION IN MULTI-BAND OPTICAL IMAGING , 2012, 1206.4306.

[108]  P. Kroupa,et al.  The VPOS: a vast polar structure of satellite galaxies, globular clusters and streams around the Milky Way , 2012, 1204.5176.

[109]  Alan W. McConnachie,et al.  THE OBSERVED PROPERTIES OF DWARF GALAXIES IN AND AROUND THE LOCAL GROUP , 2012, 1204.1562.

[110]  R. J. Wainscoat,et al.  THE Pan-STARRS1 PHOTOMETRIC SYSTEM , 2012, 1203.0297.

[111]  R. H. Wechsler,et al.  ROBUST OPTICAL RICHNESS ESTIMATION WITH REDUCED SCATTER , 2011, 1104.2089.

[112]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[113]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[114]  Ž. Ivezić,et al.  THE BLUE TIP OF THE STELLAR LOCUS: MEASURING REDDENING WITH THE SLOAN DIGITAL SKY SURVEY , 2010, 1009.4933.

[115]  Tucson,et al.  BIG FISH, LITTLE FISH: TWO NEW ULTRA-FAINT SATELLITES OF THE MILKY WAY , 2010, 1002.0504.

[116]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[117]  R. Kudritzki,et al.  THE ARAUCARIA PROJECT. INFRARED TIP OF THE RED GIANT BRANCH DISTANCES TO THE CARINA AND FORNAX DWARF SPHEROIDAL GALAXIES , 2009, 0906.0082.

[118]  Zurich,et al.  The discovery of Segue 2: a prototype of the population of satellites of satellites , 2009, 0903.0818.

[119]  C. Grillmair FOUR NEW STELLAR DEBRIS STREAMS IN THE GALACTIC HALO , 2008, 0811.3965.

[120]  R. Genzel,et al.  MONITORING STELLAR ORBITS AROUND THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 2008, 0810.4674.

[121]  Barry E. Burke,et al.  Results from the Pan-STARRS Orthogonal Transfer Array (OTA) , 2008, Astronomical Telescopes + Instrumentation.

[122]  Helmut Jerjen,et al.  THE INVISIBLES: A DETECTION ALGORITHM TO TRACE THE FAINTEST MILKY WAY SATELLITES , 2008, 0807.3345.

[123]  Tucson,et al.  Leo V: A Companion of a Companion of the Milky Way Galaxy? , 2008, 0807.2831.

[124]  B. Willman,et al.  Hundreds of Milky Way Satellites? Luminosity Bias in the Satellite Luminosity Function , 2008, 0806.4381.

[125]  E. Bica,et al.  A general catalogue of extended objects in the Magellanic System , 2008, 0806.3049.

[126]  Heidelberg,et al.  A Comprehensive Maximum Likelihood Analysis of the Structural Properties of Faint Milky Way Satellites , 2008, 0805.2945.

[127]  J. Wadsley,et al.  Stellar Feedback in Dwarf Galaxy Formation , 2007, Science.

[128]  M. Swanson,et al.  Methods for rapidly processing angular masks of next-generation galaxy surveys , 2007, 0711.4352.

[129]  Cambridge,et al.  The Luminosity Function of the Milky Way Satellites , 2007, 0706.2687.

[130]  B. Willman,et al.  A Pair of Boötes: A New Milky Way Satellite , 2007, 0705.1378.

[131]  Sergey E. Koposov,et al.  Discovery of an Unusual Dwarf Galaxy in the Outskirts of the Milky Way , 2007, astro-ph/0701154.

[132]  Sergey E. Koposov,et al.  submitted to The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 6/22/04 CATS AND DOGS, HAIR AND A HERO: A QUINTET OF NEW MILKY WAY COMPANIONS † , 2022 .

[133]  H. Newberg,et al.  Candidate Milky Way satellites in the Galactic halo , 2006, astro-ph/0612173.

[134]  T. Sakamoto,et al.  Discovery of a Faint Old Stellar System at 150 kpc , 2006, astro-ph/0610858.

[135]  Subaru Telescope,et al.  A Curious Milky Way Satellite in Ursa Major , 2006, astro-ph/0606633.

[136]  C. Grillmair Detection of a 60°-long Dwarf Galaxy Debris Stream , 2006, astro-ph/0605396.

[137]  Heidelberg,et al.  A New Milky Way Dwarf Satellite in Canes Venatici , 2006, astro-ph/0604354.

[138]  B. Yanny,et al.  A Faint New Milky Way Satellite in Bootes , 2006, astro-ph/0604355.

[139]  M. W.,et al.  A CURIOUS NEW MILKY WAY SATELLITE IN URSA MAJOR0 , 2006 .

[140]  D. Hogg,et al.  A New Milky Way Dwarf Galaxy in Ursa Major , 2005, astro-ph/0503552.

[141]  Andrew A. West,et al.  A New Milky Way Companion: Unusual Globular Cluster or Extreme Dwarf Satellite? , 2004, astro-ph/0410416.

[142]  P. Shapiro,et al.  Photoevaporation of cosmological minihaloes during reionization , 2003, astro-ph/0307266.

[143]  Max Tegmark,et al.  A scheme to deal accurately and efficiently with complex angular masks in galaxy surveys , 2003, astro-ph/0306324.

[144]  José Salgado,et al.  Nuclear Instruments and Methods , 2003 .

[145]  Rachel S. Somerville,et al.  submitted to Astrophysical Journal Letters Preprint typeset using L ATEX style emulateapj CAN PHOTOIONIZATION SQUELCHING RESOLVE THE SUBSTRUCTURE CRISIS? , 2001 .

[146]  G. Chabrier The Galactic disk mass-budget : I. stellar mass-function and density , 2001, astro-ph/0107018.

[147]  D. Weinberg,et al.  Reionization and the Abundance of Galactic Satellites , 2000, astro-ph/0002214.

[148]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[149]  F. Prada,et al.  Where are the missing galactic satellites? , 1999, astro-ph/9901240.

[150]  Edward L. Fitzpatrick,et al.  Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.

[151]  J. Kepner,et al.  An Automated Cluster Finder: The Adaptive Matched Filter , 1998, astro-ph/9803125.

[152]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[153]  P. Ullio,et al.  Observability of γ rays from dark matter neutralino annihilations in the Milky Way halo , 1997, astro-ph/9712318.

[154]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[155]  William E. Harris,et al.  A Catalog of Parameters for Globular Clusters in the Milky Way , 1996 .

[156]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[157]  M. Irwin,et al.  A dwarf satellite galaxy in Sagittarius , 1994, Nature.

[158]  R. Barlow,et al.  Extended maximum likelihood , 1990 .

[159]  R. Webbink,et al.  in Dynamics of Star Clusters , 1985 .

[160]  Carlos Jaschek,et al.  The Bright Star Catalogue , 1982 .

[161]  S. Tritton,et al.  A new Sculptor-type dwarf elliptical galaxy in Carina , 1977 .

[162]  Peter Nilson,et al.  Uppsala general catalogue of galaxies , 1973 .

[163]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[164]  J. Orear,et al.  NOTES ON STATISTICS FOR PHYSICISTS , 1958 .

[165]  G. Abell The Distribution of rich clusters of galaxies , 1958 .

[166]  A. Wilson Sculptor-Type Systems in the Local Group of Galaxies , 1955 .

[167]  H. Chernoff On the Distribution of the Likelihood Ratio , 1954 .

[168]  A. Wilson,et al.  TWO NEW STELLAR SYSTEMS IN LEO , 1950 .

[169]  H. Shapley Two Stellar Systems of a New Kind , 1938, Nature.

[170]  H. Shapley A Stellar System of a New Type , 1938 .

[171]  S. S. Wilks The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses , 1938 .

[172]  H. Plummer On the Problem of Distribution in Globular Star Clusters: (Plate 8.) , 1911 .