A method to determine the electric field of liquid argon time projection chambers using a UV laser system and its application in MicroBooNE

Liquid argon time projection chambers (LArTPCs) are now a standard detector technology for making accelerator neutrino measurements, due to their high material density, precise tracking, and calorimetric capabilities. An electric field (E-field) is required in such detectors to drift ionization electrons to the anode where they are collected. The E-field of a TPC is often approximated to be uniform between the anode and the cathode planes. However, significant distortions can appear from effects such as mechanical deformations, electrode failures, or the accumulation of space charge generated by cosmic rays. The latter effect is particularly relevant for detectors placed near the Earth's surface and with large drift distances and long drift time. To determine the E-field in situ, an ultraviolet (UV) laser system is installed in the MicroBooNE experiment at Fermi National Accelerator Laboratory. The purpose of this system is to provide precise measurements of the E-field, and to make it possible to correct for 3D spatial distortions due to E-field non-uniformities. Here we describe the methodology developed for deriving spatial distortions, the drift velocity and the E-field from UV-laser measurements.

MicroBooNE collaboration C. Adams | D. A. Wickremasinghe | R. K. Neely | J. I. Crespo-Anadón | M. Convery | V. Radeka | K. Mason | J. Conrad | M. Murphy | A. Ereditato | G. Cerati | T. Bolton | M. Mooney | S. Gollapinni | J. Asaadi | H. Greenlee | J. Joshi | W. Ketchum | M. Kirby | S. Lockwitz | Y. Tsai | J. Zennamo | S. Wolbers | T. Yang | T. Usher | P. Spentzouris | M. Bishai | D. Franco | B. Viren | W. Wu | M. Tutto | E. Church | R. Guenette | V. Papavassiliou | M. Wospakrik | L. Ren | A. Marchionni | G. Barr | G. Zeller | K. Mistry | S. Prince | M. Weber | H. Wei | O. Palamara | V. Paolone | R. Johnson | P. Nienaber | D. Naples | W. Seligman | L. Camilleri | R. Carr | G. Horton-Smith | M. Shaevitz | J. Spitz | K. Terao | M. Toups | S. Balasubramanian | C. Zhang | W. Louis | N. Tagg | F. Bay | S. Dytman | P. Guzowski | B. Kirby | I. Kreslo | J. Nowak | J. Raaf | T. Strauss | T. Wongjirad | Y. Chen | W. Gu | X. Ji | B. Littlejohn | X. Qian | B. Baller | M. Bass | F. Cavanna | B. Fleming | C. James | G. Karagiorgi | C. Mariani | J. Marshall | C. Moore | Ž. Pavlović | L. Rochester | D. Schmitz | M. Soderberg | M. Stancari | A. Szelc | S. Soldner-Rembold | A. Blake | J. Evans | S. Tufanli | S. Berkman | K. Duffy | A. Furmanski | D. Goeldi | P. Hamilton | J. H. Jo | B. Lundberg | I. Lepetic | A. Schukraft | R. An | N. Foppiani | E. Gramellini | C. Barnes | A. Hourlier | R. Sharankova | E. Huang | D. M. Caicedo | W. Tang | N. McConkey | M. Luethi | B. Eberly | J. Mousseau | P. Green | S. Gardiner | A. Papadopoulou | V. Basque | D. Caratelli | I. C. Terrazas | L. Dominé | L. E. Sanchez | R. Fitzpatrick | D. Garcia-Gamez | O. Goodwin | R. Itay | L. Jiang | Y. Jwa | A. Lister | D. Lorca | X. Luo | J. Martín-Albo | A. Mastbaum | J. Mills | T. Mohayai | J. Moon | A. Paudel | A. Rafique | H. Rogers | B. Russell | J. Sinclair | A. Smith | M. Uchida | Z. Williams | M. Alrashed | J. Anthony | A. Ashkenazi | A. Bhanderi | A. Bhat | D. Cianci | E. Cohen | L. Cooper-Troendle | D. Devitt | L. Gu | O. Hen | T. Kobilarcik | Y. Li, | S. Marcocci | V. Meddage | T. Mettler | K. Miller | A. Mogan | S. Pate | E. Piasetzky | D. Porzio | M. Ross-Lonergan | G. Scanavini | E. Snider | S. Soleti | J. S. John | K. Sutton | S. Sword-Fehlberg | R. Thornton | G. Yarbrough | L. Yates | C. V. Rohr | R. Grosso | R. C. Fernández | V. Genty | C. Hill | J. J. Vries | R. Murrells | G. Pulliam | W. V. D. Pontseele | R. G. Water | K. Woodruff | M. C. Adams | A. Diaz | V. Pandey | Z. Pavlovic | Rui An | R. Neely | J. J. D. Vries | J. Conrad | C. R. V. Rohr | J. John | Y. Li | J. Jo | J. Evans | C. Zhang | S. Pate

[1]  C. D. Moore,et al.  Ionization electron signal processing in single phase LArTPCs. Part II. Data/simulation comparison and performance in MicroBooNE , 2018, Journal of Instrumentation.

[2]  C. D. Moore,et al.  Ionization electron signal processing in single phase LArTPCs. Part I. Algorithm Description and quantitative evaluation with MicroBooNE simulation , 2018, Journal of Instrumentation.

[3]  C. D. Moore,et al.  The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector , 2017, The European Physical Journal C.

[4]  E. L. Snider,et al.  LArSoft: toolkit for simulation, reconstruction and analysis of liquid argon TPC neutrino detectors , 2017 .

[5]  D. A. Wickremasinghe,et al.  Design and Construction of the MicroBooNE Detector , 2016, 1612.05824.

[6]  J. Joshi,et al.  Measurement of Longitudinal Electron Diffusion in Liquid Argon , 2015, 1508.07059.

[7]  M. Mooney The MicroBooNE Experiment and the Impact of Space Charge Effects , 2015, 1511.01563.

[8]  A. Rappoldi,et al.  A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam , 2015, 1503.01520.

[9]  A. Ereditato,et al.  A steerable UV laser system for the calibration of liquid argon time projection chambers , 2014, 1406.6400.

[10]  A. Ereditato,et al.  Design and operation of ARGONTUBE: a 5 m long drift liquid argon TPC , 2013, 1304.6961.

[11]  A. Ereditato,et al.  Measurement of the two-photon absorption cross-section of liquid argon with a time projection chamber , 2010, 1011.6001.

[12]  H. Schütz,et al.  A prototype liquid Argon Time Projection Chamber for the study of UV laser multi-photonic ionization , 2009, 0906.3437.

[13]  M. Campanelli,et al.  Analysis of the liquid argon purity in the ICARUS T600 TPC , 2004 .

[14]  A. Dell'Acqua,et al.  Geant4 - A simulation toolkit , 2003 .

[15]  W. Walkowiak,et al.  Drift velocity of free electrons in liquid argon , 2000 .

[16]  J. Dimmock,et al.  Investigating laser-induced ionization of purified liquid argon in a time projection chamber , 1996 .

[17]  T. Lewis,et al.  Ion mobility and liquid motion in liquefied argon , 1968 .

[18]  B. L. Henson MOBILITY OF POSITIVE IONS IN LIQUEFIED ARGON AND NITROGEN , 1964 .

[19]  A. Siegman,et al.  Proposal for a , 1959 .