Universal features of terahertz absorption in disordered materials.

Using an analytical theory, experimental terahertz time-domain spectroscopy data, and numerical evidence, we demonstrate that the frequency dependence of the absorption coupling coefficient between far-infrared photons and atomic vibrations in disordered materials has the universal functional form, C(omega)=A+Bomega(2), where the material-specific constants A and B are related to the distributions of fluctuating charges obeying global and local charge neutrality, respectively.

[1]  P. Madden,et al.  Induced-dipole contributions to the conductivity and dielectric response of molten ZnCl2 , 2000 .

[2]  Sokolov,et al.  Evaluation of density of vibrational states of glasses from low-frequency Raman spectra. , 1993, Physical review. B, Condensed matter.

[3]  F. L. Galeener,et al.  Comparison of the neutron, Raman, and infrared vibrational spectra of vitreous SiO 2 , GeO 2 , and BeF 2 , 1983 .

[4]  B. Rufflé,et al.  Glass-specific behavior in the damping of acousticlike vibrations. , 2005, Physical review letters.

[5]  D. Grischkowsky,et al.  Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors , 1990 .

[6]  Stephen R. Elliott,et al.  ANHARMONICITY AND LOCALIZATION OF ATOMIC VIBRATIONS IN VITREOUS SILICA , 1999 .

[7]  Ihara,et al.  Far-infrared study of low-frequency vibrational states in As2S3 glass. , 1994, Physical review. B, Condensed matter.

[8]  T. Frauenheim,et al.  Simulation of physical properties of the chalcogenide glass As 2 S 3 using a density-functional-based tight-binding method , 2003, cond-mat/0312224.

[9]  Th. Henning,et al.  Low-temperature infrared properties of cosmic dust analogues , 1997 .

[10]  E. Schlömann,et al.  Dielectric Losses in Ionic Crystals with Disordered Charge Distributions , 1964 .

[11]  A. C. Anderson,et al.  Amorphous Solids: Low-Temperature Properties , 1981 .

[12]  R. Butcher,et al.  Far-infrared properties of dilute hydroxyl groups in an amorphous silica matrix , 1989 .

[13]  Sándor Suhai,et al.  Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties , 1998 .

[14]  A. Sokolov,et al.  Transformation of the vibrational spectrum and structure of glasses after quenching , 1993 .

[15]  R. Car,et al.  DYNAMICAL CHARGE TENSORS AND INFRARED SPECTRUM OF AMORPHOUS SIO2 , 1997 .

[16]  P. C. Taylor,et al.  Temperature and frequency dependences of the far-infrared and microwave optical absorption in amorphous materials , 1977 .

[17]  A. Maradudin,et al.  Lattice Anharmonicity and Optical Absorption in Polar Crystals. II. Classical Treatment in the Linear Approximation , 1961 .

[18]  S. Taraskin,et al.  Vibrational properties of the one-component σ phase , 2000 .

[19]  S. Taraskin,et al.  Propagation of plane-wave vibrational excitations in disordered systems , 2000 .

[20]  O. Leupold,et al.  Collective nature of the boson peak and universal transboson dynamics of glasses. , 2004, Physical review letters.

[21]  T. Ohsaka,et al.  EFFECT OF OH CONTENT ON THE FAR-INFRARED ABSORPTION AND LOW-ENERGY STATES IN SILICA GLASS , 1998 .

[22]  Seifert,et al.  Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. , 1995, Physical review. B, Condensed matter.

[23]  Wilson,et al.  Polarization Effects, Network Dynamics, and the Infrared Spectrum of Amorphous SiO2. , 1996, Physical review letters.