A mass and momentum flux-form high-order discontinuous Galerkin shallow water model on the cubed-sphere

A well-balanced discontinuous Galerkin (DG) flux-form shallow-water (SW) model on the sphere is developed and compared with a nodal DG SW model cast in the vector-invariant form for accuracy and conservation properties. A second-order diffusion scheme based on the local discontinuous Galerkin (LDG) method is added to the viscous version of the SW model and tested for conservation behaviors. The inviscid flux-form SW model is found to have better conservation of total energy and zonal angular momentum while the vector-invariant form provides better ability of conserving potential enstrophy. The inviscid flux-form tends to generate spurious vorticity but the LDG scheme combined with a well-balanced treatment can effectively eliminate the small-scale noise and generate smooth and accurate results.

[1]  John Thuburn,et al.  Some conservation issues for the dynamical cores of NWP and climate models , 2008, J. Comput. Phys..

[2]  Bernardo Cockburn An introduction to the Discontinuous Galerkin method for convection-dominated problems , 1998 .

[3]  Masaki Satoh,et al.  Atmospheric Circulation Dynamics and General Circulation Models , 2013 .

[4]  R. Sadourny Conservative Finite-Difference Approximations of the Primitive Equations on Quasi-Uniform Spherical Grids , 1972 .

[5]  L. K. Taylor,et al.  Strong Conservative Form of the Incompressible Navier—Stokes Equations in a Rotating Frame with a Solution Procedure , 1996 .

[6]  H. Tufo,et al.  Computational aspects of a scalable high-order discontinuous Galerkin atmospheric dynamical core , 2009 .

[7]  E. Toro Shock-Capturing Methods for Free-Surface Shallow Flows , 2001 .

[8]  M. Taylor,et al.  Accuracy Analysis of a Spectral Element Atmospheric Model Using a Fully Implicit Solution Framework , 2010 .

[9]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[10]  Yulong Xing,et al.  High order well-balanced schemes , 2010 .

[11]  Erik Lehto,et al.  A guide to RBF-generated finite differences for nonlinear transport: Shallow water simulations on a sphere , 2012, J. Comput. Phys..

[12]  Chao Yang,et al.  A Fully Implicit Domain Decomposition Algorithm for Shallow Water Equations on the Cubed-Sphere , 2010, SIAM J. Sci. Comput..

[13]  Stephen J. Thomas,et al.  A mass and energy conserving spectral element atmospheric dynamical core on the cubed-sphere grid , 2007 .

[14]  Klaus M. Weickmann,et al.  Angular momentum in the global atmospheric circulation , 2007 .

[15]  Bram van Leer,et al.  High-order finite-volume methods for the shallow-water equations on the sphere , 2010, J. Comput. Phys..

[16]  P. Paolucci,et al.  The “Cubed Sphere” , 1996 .

[17]  Anne Gelb,et al.  Spectral Viscosity for Shallow Water Equations in Spherical Geometry , 2001 .

[18]  P. Swarztrauber,et al.  A standard test set for numerical approximations to the shallow water equations in spherical geometry , 1992 .

[19]  Henry M. Tufo,et al.  High-order Galerkin methods for scalable global atmospheric models , 2007, Comput. Geosci..

[20]  James A. Rossmanith,et al.  A wave propagation method for hyperbolic systems on the sphere , 2006, J. Comput. Phys..

[21]  Feng Xiao,et al.  Shallow water model on cubed-sphere by multi-moment finite volume method , 2008, J. Comput. Phys..

[22]  J. Côté,et al.  A Lagrange multiplier approach for the metric terms of semi‐Lagrangian models on the sphere , 1988 .

[23]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[24]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[25]  R. Nair,et al.  The central-upwind finite-volume method for atmospheric numerical modeling , 2013 .

[26]  R. K. Scott,et al.  An initial-value problem for testing numerical models of the global shallow-water equations , 2004 .

[27]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[28]  Christiane Jablonowski,et al.  The pros and cons of diffusion, filters and fixers in Atmospheric General Circulation Models , 2011 .

[29]  Todd D. Ringler,et al.  Momentum, Vorticity and Transport: Considerations in the Design of a Finite-Volume Dynamical Core , 2011 .

[30]  J. Pedlosky Geophysical Fluid Dynamics , 1979 .

[31]  M. Taylor The Spectral Element Method for the Shallow Water Equations on the Sphere , 1997 .

[32]  A. E. Gill Atmosphere-Ocean Dynamics , 1982 .

[33]  Yulong Xing,et al.  Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations , 2010 .

[34]  Yulong Xing,et al.  High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms , 2006, J. Comput. Phys..

[35]  Francis X. Giraldo,et al.  A discontinuous Galerkin method for the shallow water equations in spherical triangular coordinates , 2008, J. Comput. Phys..

[36]  Stephen J. Thomas,et al.  A Discontinuous Galerkin Global Shallow Water Model , 2005, Monthly Weather Review.

[37]  John M. Dennis,et al.  A Comparison of Two Shallow-Water Models with Nonconforming Adaptive Grids , 2008 .

[38]  Stephen J. Thomas,et al.  A Discontinuous Galerkin Transport Scheme on the Cubed Sphere , 2005 .

[39]  R. Nair Diffusion Experiments with a Global Discontinuous Galerkin Shallow-Water Model , 2009 .

[40]  Chao Yang,et al.  Parallel multilevel methods for implicit solution of shallow water equations with nonsmooth topography on the cubed-sphere , 2011, J. Comput. Phys..

[41]  Aimé Fournier,et al.  Voronoi, Delaunay, and Block-Structured Mesh Refinement for Solution of the Shallow-Water Equations on the Sphere , 2009 .

[42]  Jan S. Hesthaven,et al.  Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations , 2002 .

[43]  Alfredo Bermúdez,et al.  Upwind methods for hyperbolic conservation laws with source terms , 1994 .

[44]  F. Mesinger,et al.  A global shallow‐water model using an expanded spherical cube: Gnomonic versus conformal coordinates , 1996 .