Theory and simulation in heterogeneous gold catalysis.

This critical review covers the application of quantum chemistry to the burgeoning area of the heterogeneous oxidation by Au. We focus on the most established reaction, the oxidation of CO at low temperature. The review begins with an overview of the methods available comparing the treatment of the electron-electron interaction and relativistic effects. The structure of Au particles and their interaction with oxide reviews is then discussed in detail. Calculations of the adsorption and reaction of CO and O2 are then considered and results from isolated and supported Au clusters compared (155 references).

[1]  S. Nayak,et al.  A density functional study of carbon monoxide adsorption on small cationic, neutral, and anionic gold clusters , 2002 .

[2]  Pekka Pyykkö,et al.  Relativistic effects in structural chemistry , 1988 .

[3]  G. Pacchioni,et al.  Electronic structure of an isolated oxygen vacancy at the TiO2(110) surface , 2002 .

[4]  C. Stampfl,et al.  First-principles investigations of the structure and stability of oxygen adsorption and surface oxide formation at Au(111) , 2007 .

[5]  K. Balasubramanian,et al.  CASSCF/CI calculations of low‐lying states and potential energy surfaces of Au3 , 1987 .

[6]  Bjørk Hammer,et al.  Theoretical study of CO oxidation on Au nanoparticles supported by MgO(100) , 2004 .

[7]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[8]  L. Giordano,et al.  Observable consequences of formation of Au anions from deposition of Au atoms on ultrathin oxide films. , 2007, The Journal of chemical physics.

[9]  Matthias Scheffler,et al.  Composition, structure, and stability of RuO2(110) as a function of oxygen pressure , 2001 .

[10]  B. Gates,et al.  Activation of Au/γ-Al2O3 Catalysts for CO Oxidation: Characterization by X-ray Absorption Near Edge Structure and Temperature Programmed Reduction , 2004 .

[11]  Ying Chen,et al.  Recent Advances in Understanding CO Oxidation on Gold Nanoparticles Using Density Functional Theory , 2007 .

[12]  Koji Tanaka,et al.  Effects of stoichiometry on electronic states of Au and Pt supported on TiO2(110) , 2005 .

[13]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[14]  Guichang Wang,et al.  A systematic theoretical study of water dissociation on clean and oxygen-preadsorbed transition metals , 2006 .

[15]  G. Bond,et al.  Preparation and reactivation of Au/TiO2 catalysts , 2007 .

[16]  A. Selloni,et al.  Small gold clusters on stoichiometric and defected TiO2 anatase (101) and their interaction with CO: A density functional study , 2002 .

[17]  Masatake Haruta,et al.  Catalysis of Gold Nanoparticles Deposited on Metal Oxides , 2002 .

[18]  Steven H. Szczepankiewicz,et al.  Electron Traps and the Stark Effect on Hydroxylated Titania Photocatalysts , 2002 .

[19]  Masatake Haruta,et al.  Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide , 1989 .

[20]  G. Hutchings Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts , 1985 .

[21]  U. Landman,et al.  Interaction of O2 with Gold Clusters: Molecular and Dissociative Adsorption , 2003 .

[22]  M. Haruta,et al.  Electronic structures of Au supported on TiO2 , 2005 .

[23]  D. Willock,et al.  The (010) surface of α-MoO3, a DFT + U study , 2005 .

[24]  Cristina Puzzarini,et al.  Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements , 2005 .

[25]  Yi Li,et al.  A theoretical study on the electronic structures of TiO2: Effect of Hartree-Fock exchange. , 2005, The journal of physical chemistry. B.

[26]  Harold Basch,et al.  Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms , 1992 .

[27]  J. Carrasco,et al.  When the reporter induces the effect: unusual IR spectra of CO on Au1/MgO(001)/Mo(001). , 2006, Angewandte Chemie.

[28]  B. Mile,et al.  The geometric and electronic structures of small metal clusters of group 1B metals , 1985 .

[29]  Horia Metiu,et al.  Adsorption of gold on stoichiometric and reduced rutile TiO2 (110) surfaces , 2003 .

[30]  B. Gates,et al.  Catalysis by supported gold: correlation between catalytic activity for CO oxidation and oxidation states of gold. , 2004, Journal of the American Chemical Society.

[31]  G. Hutchings,et al.  Calculations on the adsorption of Au to MgO surfaces using SIESTA , 2006 .

[32]  Amanda S Barnard,et al.  Predicting the shape and structure of face-centered cubic gold nanocrystals smaller than 3 nm. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[33]  G. Mills,et al.  The adsorption of molecular oxygen on neutral and negative Aun clusters (n=2–5) , 2002 .

[34]  D. Yuan,et al.  Saturated adsorption of CO and coadsorption of CO and O2 on AuN- (N=2-7) clusters. , 2004, The Journal of chemical physics.

[35]  D. Thompson,et al.  Gold's future role in fuel cell systems , 2003 .

[36]  Claus H. Christensen,et al.  Catalytic activity of Au nanoparticles , 2007 .

[37]  G. Tendeloo,et al.  Low-energy-deposited Au clusters investigated by high-resolution electron microscopy and molecular dynamics simulations , 2000 .

[38]  P. Sautet,et al.  Au atoms and dimers on the MgO(100) surface: a DFT study of nucleation at defects. , 2005, The journal of physical chemistry. B.

[39]  E. Kotomin,et al.  Adsorption of single Ag and Cu atoms on regular and defective MgO(001) substrates: an ab initio study , 2004 .

[40]  Núria López,et al.  CO oxidation on gold nanoparticles: Theoretical studies , 2005 .

[41]  Pekka Pyykkö,et al.  Theoretical chemistry of gold. II , 2005 .

[42]  Hannes Jonsson,et al.  Reversible work transition state theory: application to dissociative adsorption of hydrogen , 1995 .

[43]  Pekka Pyykkö,et al.  Theoretical chemistry of gold. , 2004, Angewandte Chemie.

[44]  G. Watson,et al.  A DFT+U description of oxygen vacancies at the TiO2 rutile (110) surface , 2007 .

[45]  Li Xiao,et al.  Structural study of gold clusters. , 2006, The Journal of chemical physics.

[46]  Georg Kresse,et al.  Significance of single-electron energies for the description of CO on Pt(111) , 2003 .

[47]  N. Rösch,et al.  Systematic Density Functional Study of the Adsorption of Transition Metal Atoms on the MgO(001) Surface , 1997 .

[48]  Martin Muhler,et al.  CO Oxidation over Supported Gold Catalysts—“Inert” and “Active” Support Materials and Their Role for the Oxygen Supply during Reaction , 2001 .

[49]  Frank R. Wagner,et al.  The CO/Pt(111) puzzle , 2000 .

[50]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[51]  J. Nørskov,et al.  Why gold is the noblest of all the metals , 1995, Nature.

[52]  K. Honkala,et al.  Au Adsorption on Regular and Defected Thin MgO(100) Films Supported by Mo , 2007 .

[53]  D. Kolb,et al.  Relativistic density functional calculations using two-spinor minimax finite-element method and linear combination of atomic orbitals for ZnO, CdO, HgO, UubO and Cu2, Ag2, Au2, Rg2. , 2006, The Journal of chemical physics.

[54]  H. Metiu,et al.  Density functional study of the charge on Aun clusters (n=1-7) supported on a partially reduced rutile TiO2(110): are all clusters negatively charged? , 2007, The Journal of chemical physics.

[55]  J. Rodríguez,et al.  Unravelling the origin of the high-catalytic activity of supported Au: a density-functional theory-based interpretation. , 2006, Journal of the American Chemical Society.

[56]  Koji Kariya-city Aichi-pref. Tanaka,et al.  Electronic structures of Au onTiO2(110)by first-principles calculations , 2004 .

[57]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations , 1984 .

[58]  R. Whetten,et al.  Low-temperature activation of molecular oxygen by gold clusters: a stoichiometric process correlated to electron affinity , 2000 .

[59]  U. Landman,et al.  Structural, electronic, and impurity-doping effects in nanoscale chemistry: supported gold nanoclusters. , 2003, Angewandte Chemie.

[60]  C. A. Estrada,et al.  Synthesis and characterization of ultra-thin MgO films on Mo(100) , 1991 .

[61]  T. Madey,et al.  Effect of substrate temperature on the epitaxial growth of Au on TiO2(110) , 2001 .

[62]  D. Meier,et al.  The influence of metal cluster size on adsorption energies: CO adsorbed on Au clusters supported on TiO2. , 2004, Journal of the American Chemical Society.

[63]  C. Catlow,et al.  The nature of the oxidation states of gold on ZnO. , 2005, Physical chemistry chemical physics : PCCP.

[64]  D. F. Ogletree,et al.  LEED intensity analysis of the structures of clean Pt(111) and of CO adsorbed on Pt(111) in the c(4 × 2) arrangement , 1986 .

[65]  R. Whetten,et al.  Comment on: The adsorption of molecular oxygen on neutral and negative AuN clusters (N=2–5) [Chem. Phys. Lett. 359 (2002) 493] , 2003 .

[66]  T. Risse,et al.  Interaction of gold clusters with color centers on MgO(001) films. , 2006, Angewandte Chemie.

[67]  W. Delgass,et al.  Formation of hydrogen peroxide from H2 and O2 over a neutral gold trimer: a DFT study , 2004 .

[68]  Hannu Häkkinen,et al.  Catalytic CO oxidation by free Au2-: experiment and theory. , 2003, Journal of the American Chemical Society.

[69]  Notker Rösch,et al.  From clusters to bulk: A relativistic density functional investigation on a series of gold clusters Aun, n=6,…,147 , 1997 .

[70]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[71]  Y. Iwasawa,et al.  Transient studies on carbon monoxide oxidation over supported gold catalysts: support effects , 2004 .

[72]  Hannu Häkkinen,et al.  Charging Effects on Bonding and Catalyzed Oxidation of CO on Au8 Clusters on MgO , 2005, Science.

[73]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[74]  K. Honkala,et al.  Adsorption of gold clusters on metal-supported MgO: Correlation to electron affinity of gold , 2007 .

[75]  G. Pacchioni,et al.  A Combined EPR and Quantum Chemical Approach to the Structure of Surface Fs+(H) Centers on MgO , 1997 .

[76]  U. Landman,et al.  Gas-phase catalytic oxidation of CO by Au(2-). , 2001, Journal of the American Chemical Society.

[77]  Y. Kitagawa,et al.  Theoretical study of H2O and O2 adsorption on Au small clusters , 2007 .

[78]  J. Nørskov,et al.  The adhesion and shape of nanosized Au particles in a Au/TiO2 catalyst , 2004 .

[79]  Guntram Rauhut,et al.  Energy-consistent pseudopotentials for group 11 and 12 atoms: adjustment to multi-configuration Dirac–Hartree–Fock data , 2005 .

[80]  Kimberly A. Gray,et al.  Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR , 2003 .

[81]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[82]  E. J. Baerends,et al.  Relativistic calculations to assess the ability of the generalized gradient approximation to reproduce trends in cohesive properties of solids , 2000 .

[83]  M. Haruta,et al.  A Kinetic and Adsorption Study of CO Oxidation over Unsupported Fine Gold Powder and over Gold Supported on Titanium Dioxide , 1999 .

[84]  White,et al.  Adsorption and Dissociation of O2 on Ag(110). , 1996, Physical review letters.

[85]  Evert Jan Baerends,et al.  Relativistic regular two‐component Hamiltonians , 1993 .

[86]  J. Nørskov,et al.  CO oxidation on rutile-supported au nanoparticles. , 2005, Angewandte Chemie.

[87]  L. Giordano,et al.  Charging of metal atoms on ultrathin MgO/Mo(100) films. , 2005, Physical review letters.

[88]  J. Nørskov,et al.  Making gold less noble , 2000 .

[89]  Bernard Delmon,et al.  Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4 , 1993 .

[90]  B. Hammer,et al.  Adsorption, diffusion, and dissociation of molecular oxygen at defected TiO2(110): a density functional theory study. , 2004, The Journal of chemical physics.

[91]  J. V. Lenthe,et al.  State of the Art in Counterpoise Theory , 1994 .

[92]  W. Delgass,et al.  Comparison of the catalytic activity of Au3, Au4+, Au5, and Au5- in the gas-phase reaction of H2 and O2 to form hydrogen peroxide: a density functional theory investigation. , 2005, The journal of physical chemistry. B.

[93]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[94]  L. Andrews,et al.  Reactions of Laser-Ablated Ag and Au Atoms with Carbon Monoxide: Matrix Infrared Spectra and Density Functional Calculations on Ag(CO)n (n = 2, 3), Au(CO)n (n = 1, 2) and M(CO)n+ (n = 1−4; M = Ag, Au) , 2000 .

[95]  Evert Jan Baerends,et al.  Relativistic total energy using regular approximations , 1994 .

[96]  The energetics and electronic structure of defective and irregular surfaces on MgO , 1995, mtrl-th/9505001.

[97]  Ali Alavi,et al.  Catalytic role of gold in gold-based catalysts: a density functional theory study on the CO oxidation on gold. , 2002, Journal of the American Chemical Society.

[98]  S. Pennycook,et al.  Role of the nanoscale in catalytic CO oxidation by supported Au and Pt nanostructures , 2007 .

[99]  Solomon,et al.  Orientation and bond length of molecular oxygen on Ag(110) and Pt(111): A near-edge x-ray-absorption fine-structure study. , 1987, Physical review. B, Condensed matter.

[100]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals , 1985 .

[101]  M. Cordeiro,et al.  DFT study of the Au(3 2 1) surface reconstruction by consecutive deposition of oxygen atoms , 2008 .

[102]  Gyeong S. Hwang,et al.  ADSORPTION OF AU ATOMS ON STOICHIOMETRIC AND REDUCED TIO2 (1 1 0) RUTILE SURFACES: A FIRST PRINCIPLES STUDY , 2003 .

[103]  M. Gordon,et al.  The interaction of oxygen with small gold clusters , 2003 .

[104]  The energetics of oxide surfaces by quantum Monte?Carlo , 2006 .

[105]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[106]  Thomas Bredow,et al.  Effect of exchange and correlation on bulk properties of MgO, NiO, and CoO , 2000 .

[107]  P. Dirac The quantum theory of the electron , 1928 .

[108]  Hannu Häkkinen,et al.  When Gold Is Not Noble: Nanoscale Gold Catalysts , 1999 .

[109]  G. Pacchioni,et al.  Excess electrons stabilized on ionic oxide surfaces. , 2006, Accounts of chemical research.

[110]  Scott J. Thompson,et al.  Revisiting the (110) surface structure of TiO 2 : A theoretical analysis , 2006 .

[111]  Carlo Cavazzoni,et al.  First-principles codes for computational crystallography in the Quantum-ESPRESSO package , 2005 .

[112]  T. García,et al.  Selective oxidation of CO in the presence of H2, H2O and CO2 via gold for use in fuel cells. , 2005, Chemical communications.

[113]  Xue-qing Gong,et al.  Catalytic role of metal oxides in gold-based catalysts: a first principles study of CO oxidation on TiO2 supported Au. , 2003, Physical review letters.

[114]  D. Goodman,et al.  Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties , 1998, Science.

[115]  Ali Alavi,et al.  CO oxidation on Pt(111): An ab initio density functional theory study , 1998 .

[116]  Annabella Selloni,et al.  Electronic structure of defect states in hydroxylated and reduced rutile TiO2(110) surfaces. , 2006, Physical review letters.

[117]  M. Mavrikakis,et al.  Adsorption and Dissociation of O2 on Gold Surfaces: Effect of Steps and Strain , 2003 .

[118]  P Hu,et al.  Identifying an O2 supply pathway in CO oxidation on Au/TiO2(110): a density functional theory study on the intrinsic role of water. , 2006, Journal of the American Chemical Society.

[119]  K. Balasubramanian,et al.  Infrared vibronic absorption spectrum and spin–orbit calculations of the upper spin–orbit component of the Au3 ground state , 2002 .

[120]  A. Kleyn,et al.  The interaction of oxygen with the Ag(110) surface , 1996 .

[121]  W. Delgass,et al.  Density functional theory investigation of gold cluster geometry and gas-phase reactivity with O2 , 2002 .

[122]  Núria López,et al.  On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation , 2004 .

[123]  D. Goodman,et al.  CHARACTERIZATION OF METAL CLUSTERS (PD AND AU) SUPPORTED ON VARIOUS METAL OXIDE SURFACES (MGO AND TIO2) , 1997 .

[124]  H. Freund,et al.  Surface chemistry of catalysis by gold , 2004 .

[125]  K. J. Taylor,et al.  Ultraviolet photoelectron spectra of coinage metal clusters , 1992 .

[126]  N. Harrison,et al.  On the prediction of band gaps from hybrid functional theory , 2001 .

[127]  Jinlong Yang,et al.  Adsorption energies of molecular oxygen on Au clusters. , 2004, The Journal of chemical physics.

[128]  Harold H. Kung,et al.  Supported Au catalysts for low temperature CO oxidation , 2003 .

[129]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[130]  Uzi Landman,et al.  Water-enhanced catalysis of CO oxidation on free and supported gold nanoclusters. , 2005, Physical review letters.

[131]  Jens K Nørskov,et al.  Catalytic CO oxidation by a gold nanoparticle: a density functional study. , 2002, Journal of the American Chemical Society.

[132]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[133]  Scheffler,et al.  Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). , 1992, Physical review. B, Condensed matter.

[134]  M. Musiał,et al.  Where does the planar-to-nonplanar turnover occur in small gold clusters? , 2005, Journal of the American Chemical Society.

[135]  Uzi Landman,et al.  Gold clusters(AuN,2<~N<~10)and their anions , 2000 .

[136]  David Thompson,et al.  Gold-catalysed oxidation of carbon monoxide , 2000 .

[137]  G. Bond,et al.  Gold on titania catalysts for the oxidation of carbon monoxide: control of pH during preparation with various gold contents , 2005 .

[138]  Yingkai Zhang,et al.  Comment on “Generalized Gradient Approximation Made Simple” , 1998 .

[139]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[140]  K. Krogh-Jespersen,et al.  Why Do Cationic Carbon Monoxide Complexes Have High C−O Stretching Force Constants and Short C−O Bonds? Electrostatic Effects, Not σ-Bonding , 1996 .

[141]  Mitsutaka Okumura,et al.  The interaction of neutral and charged Au clusters with O2, CO and H2 , 2005 .

[142]  M. Haruta,et al.  Vital role of moisture in the catalytic activity of supported gold nanoparticles. , 2004, Angewandte Chemie.

[143]  D. Goodman,et al.  Structural and electronic properties of Au on TiO{sub 2}(110) , 2000 .

[144]  Julian D. Gale,et al.  Simulation of low index rutile surfaces with a transferable variable-charge Ti–O interatomic potential and comparison with ab initio results , 2002 .

[145]  P. Ordejón,et al.  Theoretical study of O2 and CO adsorption on Aun clusters (n = 5–10) , 2005 .