An introduction to higher dimensional local fields and adeles

These notes are an introduction to higher dimensional local fields and higher dimensional adeles. As well as the foundational theory, we summarise the theory of topologies on higher dimensional local fields and higher dimensional local class field theory.

[1]  James S. Milne,et al.  Class Field Theory , 2013 .

[2]  Alberto Cámara Locally convex structures on higher local fields , 2012, 1210.8068.

[3]  Alberto Cámara Functional analysis on two-dimensional local fields , 2012, 1210.2995.

[4]  M. Morrow Grothendieck's trace map for arithmetic surfaces via residues and higher adeles , 2011, 1101.1883.

[5]  A. Parshin Representations of Higher Adelic Groups and Arithmetic , 2010, 1012.0486.

[6]  I. Fesenko Analysis on arithmetic schemes. II , 2010 .

[7]  M. Morrow An explicit approach to residues on and dualizing sheaves of arithmetic surfaces , 2009, 0911.0590.

[8]  D V Osipov,et al.  Harmonic analysis on local fields and adelic spaces. I , 2008 .

[9]  M. Morrow Integration on product spaces and GL_n of a valuation field over a local field , 2007, 0712.2175.

[10]  M. Morrow Integration on Valuation Fields over Local Fields , 2007, 0712.2172.

[11]  J. Milnor Algebraic K-Theory and Quadratic Forms , 2005 .

[12]  Henry H. Kim,et al.  Spherical Hecke algebras of SL2 over 2-dimensional local fields , 2004 .

[13]  J. Borger A monogenic Hasse-Arf theorem , 2004 .

[14]  D. Kazhdan,et al.  Representations of algebraic groups over a 2-dimensional local field , 2003, math/0302174.

[15]  I. Fesenko Analysis on arithmetic schemes. I. , 2003 .

[16]  Ivan Fesenko,et al.  Local Fields and Their Extensions , 2002 .

[17]  Qing Liu,et al.  Algebraic Geometry and Arithmetic Curves , 2002 .

[18]  Takeshi Saito Ramification of local fields with imperfect residue fields III , 2000, math/0010103.

[19]  C. Weibel,et al.  An Introduction to Homological Algebra: References , 1960 .

[20]  I. Fesenko Sequential topologies and quotients of Milnor K -groups of higher local fields , 2002 .

[21]  J. Borger Conductors and the moduli of residual perfection , 2001, math/0112305.

[22]  M. Kapranov Semiinfinite symmetric powers , 2001, math/0107089.

[23]  Michael Spiess Generalized class formations and higher class field theory , 2000 .

[24]  I. Zhukov 14. Explicit abelian extensions of complete discrete valuation fields , 2000 .

[25]  A. Parshin Higher dimensional local fields and L–functions , 2000 .

[26]  I. Zhukov An approach to higher ramification theory , 2000 .

[27]  Kazuya Kato Existence theorem for higher local fields , 2000 .

[28]  I. Zhukov Higher dimensional local fields , 2000 .

[29]  D. Osipov Adele constructions of direct images of differentials and symbols , 1997 .

[30]  Michael Spiess Class Formations and Higher Dimensional Local Class Field Theory , 1997 .

[31]  R. Hübl Adeles and differential forms. , 1996 .

[32]  Yoshihiro Koya A generalization of Tate-Nakayama theorem by using hypercohomology , 1993 .

[33]  P. Sastry,et al.  An explicit construction of the Grothendieck residue complex , 1992 .

[34]  A. Huber On the Parshin-Beilinson Adeles for schemes , 1991 .

[35]  Yoshihiro Koya A generalization of class formation by using hypercohomology , 1990 .

[36]  Miles Reid,et al.  Commutative Ring Theory , 1989 .

[37]  I. Fesenko K-groups of multidimensional local fields , 1989 .

[38]  Kazuya Kato Vanishing cycles, ramification of valuations, and class field theory , 1987 .

[39]  Osamu Hyodo Wild Ramification in the Imperfect Residue Field Case , 1987 .

[40]  Sadao Saito,et al.  Global class field theory of arithmetic schemes , 1986 .

[41]  Kazuya Kato,et al.  Two Dimensional Class Field Theory , 1983 .

[42]  A. Parshin Chern classes, adeles and L-functions. , 1983 .

[43]  V. Lomadze ON RESIDUES IN ALGEBRAIC GEOMETRY , 1982 .

[44]  A. Suslin Mennicke symbols and their applications in the k-theory of fields , 1982 .

[45]  A. Beilinson Residues and adeles , 1980 .

[46]  加藤 和也 A generalization of local class field theory by using K-groups I, II, III = K-群による局所類体論の一般化 , 1980 .

[47]  Jean-Pierre Serre,et al.  Local Class Field Theory , 1979 .

[48]  Kazuya Kato A generalization of local class field theory by using $K$-groups, II , 1977 .

[49]  A. N. Paršin ON THE ARITHMETIC OF TWO-DIMENSIONAL SCHEMES. I. DISTRIBUTIONS AND RESIDUES , 1976 .

[50]  T. Willmore Algebraic Geometry , 1973, Nature.

[51]  H. Bass,et al.  The Milnor ring of a global field , 1973 .

[52]  Hyman Bass,et al.  "Classical" algebraic K-theory, and connections with arithmetic , 1973 .

[53]  J. Carroll On the torsion in K2 of local fields , 1973 .

[54]  J. Graham Continuous symbols on fields of formal power series , 1973 .

[55]  Hideya Matsumoto,et al.  Sur les sous-groupes arithm'etiques des groupes semi-simples d'eploy'es , 1969 .

[56]  Calvin C. Moore,et al.  Group extensions ofp-adic and adelic linear groups , 1968 .

[57]  S. Franklin,et al.  Spaces in which sequences suffice , 1965 .

[58]  C. Weibel The Development of Algebraic K-theory before 1980 , 2022 .