An introduction to higher dimensional local fields and adeles
暂无分享,去创建一个
[1] James S. Milne,et al. Class Field Theory , 2013 .
[2] Alberto Cámara. Locally convex structures on higher local fields , 2012, 1210.8068.
[3] Alberto Cámara. Functional analysis on two-dimensional local fields , 2012, 1210.2995.
[4] M. Morrow. Grothendieck's trace map for arithmetic surfaces via residues and higher adeles , 2011, 1101.1883.
[5] A. Parshin. Representations of Higher Adelic Groups and Arithmetic , 2010, 1012.0486.
[6] I. Fesenko. Analysis on arithmetic schemes. II , 2010 .
[7] M. Morrow. An explicit approach to residues on and dualizing sheaves of arithmetic surfaces , 2009, 0911.0590.
[8] D V Osipov,et al. Harmonic analysis on local fields and adelic spaces. I , 2008 .
[9] M. Morrow. Integration on product spaces and GL_n of a valuation field over a local field , 2007, 0712.2175.
[10] M. Morrow. Integration on Valuation Fields over Local Fields , 2007, 0712.2172.
[11] J. Milnor. Algebraic K-Theory and Quadratic Forms , 2005 .
[12] Henry H. Kim,et al. Spherical Hecke algebras of SL2 over 2-dimensional local fields , 2004 .
[13] J. Borger. A monogenic Hasse-Arf theorem , 2004 .
[14] D. Kazhdan,et al. Representations of algebraic groups over a 2-dimensional local field , 2003, math/0302174.
[15] I. Fesenko. Analysis on arithmetic schemes. I. , 2003 .
[16] Ivan Fesenko,et al. Local Fields and Their Extensions , 2002 .
[17] Qing Liu,et al. Algebraic Geometry and Arithmetic Curves , 2002 .
[18] Takeshi Saito. Ramification of local fields with imperfect residue fields III , 2000, math/0010103.
[19] C. Weibel,et al. An Introduction to Homological Algebra: References , 1960 .
[20] I. Fesenko. Sequential topologies and quotients of Milnor K -groups of higher local fields , 2002 .
[21] J. Borger. Conductors and the moduli of residual perfection , 2001, math/0112305.
[22] M. Kapranov. Semiinfinite symmetric powers , 2001, math/0107089.
[23] Michael Spiess. Generalized class formations and higher class field theory , 2000 .
[24] I. Zhukov. 14. Explicit abelian extensions of complete discrete valuation fields , 2000 .
[25] A. Parshin. Higher dimensional local fields and L–functions , 2000 .
[26] I. Zhukov. An approach to higher ramification theory , 2000 .
[27] Kazuya Kato. Existence theorem for higher local fields , 2000 .
[28] I. Zhukov. Higher dimensional local fields , 2000 .
[29] D. Osipov. Adele constructions of direct images of differentials and symbols , 1997 .
[30] Michael Spiess. Class Formations and Higher Dimensional Local Class Field Theory , 1997 .
[31] R. Hübl. Adeles and differential forms. , 1996 .
[32] Yoshihiro Koya. A generalization of Tate-Nakayama theorem by using hypercohomology , 1993 .
[33] P. Sastry,et al. An explicit construction of the Grothendieck residue complex , 1992 .
[34] A. Huber. On the Parshin-Beilinson Adeles for schemes , 1991 .
[35] Yoshihiro Koya. A generalization of class formation by using hypercohomology , 1990 .
[36] Miles Reid,et al. Commutative Ring Theory , 1989 .
[37] I. Fesenko. K-groups of multidimensional local fields , 1989 .
[38] Kazuya Kato. Vanishing cycles, ramification of valuations, and class field theory , 1987 .
[39] Osamu Hyodo. Wild Ramification in the Imperfect Residue Field Case , 1987 .
[40] Sadao Saito,et al. Global class field theory of arithmetic schemes , 1986 .
[41] Kazuya Kato,et al. Two Dimensional Class Field Theory , 1983 .
[42] A. Parshin. Chern classes, adeles and L-functions. , 1983 .
[43] V. Lomadze. ON RESIDUES IN ALGEBRAIC GEOMETRY , 1982 .
[44] A. Suslin. Mennicke symbols and their applications in the k-theory of fields , 1982 .
[45] A. Beilinson. Residues and adeles , 1980 .
[46] 加藤 和也. A generalization of local class field theory by using K-groups I, II, III = K-群による局所類体論の一般化 , 1980 .
[47] Jean-Pierre Serre,et al. Local Class Field Theory , 1979 .
[48] Kazuya Kato. A generalization of local class field theory by using $K$-groups, II , 1977 .
[49] A. N. Paršin. ON THE ARITHMETIC OF TWO-DIMENSIONAL SCHEMES. I. DISTRIBUTIONS AND RESIDUES , 1976 .
[50] T. Willmore. Algebraic Geometry , 1973, Nature.
[51] H. Bass,et al. The Milnor ring of a global field , 1973 .
[52] Hyman Bass,et al. "Classical" algebraic K-theory, and connections with arithmetic , 1973 .
[53] J. Carroll. On the torsion in K2 of local fields , 1973 .
[54] J. Graham. Continuous symbols on fields of formal power series , 1973 .
[55] Hideya Matsumoto,et al. Sur les sous-groupes arithm'etiques des groupes semi-simples d'eploy'es , 1969 .
[56] Calvin C. Moore,et al. Group extensions ofp-adic and adelic linear groups , 1968 .
[57] S. Franklin,et al. Spaces in which sequences suffice , 1965 .
[58] C. Weibel. The Development of Algebraic K-theory before 1980 , 2022 .