A Numeric Library for Use in Modelica Simulations with Lapack, SuperLU, Interpolation, and MatrixIO
暂无分享,去创建一个
[1] James Demmel,et al. A Supernodal Approach to Sparse Partial Pivoting , 1999, SIAM J. Matrix Anal. Appl..
[2] E. Meijering,et al. A chronology of interpolation: from ancient astronomy to modern signal and image processing , 2002, Proc. IEEE.
[3] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[4] Peter A. Fritzson,et al. Principles of object-oriented modeling and simulation with Modelica 2.1 , 2004 .
[5] Boris I. Kvasov,et al. Methods of Shape-Preserving Spline Approximation , 2000 .
[6] G. Arfken. Mathematical Methods for Physicists , 1967 .
[7] B. Barsky,et al. An Introduction to Splines for Use in Computer Graphics and Geometric Modeling , 1987 .
[8] R. F. Boisvert,et al. The Matrix Market Exchange Formats: Initial Design | NIST , 1996 .
[9] William H. Press,et al. Numerical recipes in FORTRAN (2nd ed.): the art of scientific computing , 1992 .
[10] Xiaoye S. Li,et al. SuperLU Users'' Guide , 1997 .
[11] Ed Anderson,et al. LAPACK Users' Guide , 1995 .
[12] Richard F. Barrett,et al. Matrix Market: a web resource for test matrix collections , 1996, Quality of Numerical Software.
[13] Iain S. Duff,et al. Users' guide for the Harwell-Boeing sparse matrix collection (Release 1) , 1992 .
[14] C. R. Deboor,et al. A practical guide to splines , 1978 .
[15] Adrian Pop,et al. The OpenModelica Modeling, Simulation, and Software Development Environment , 2005 .
[16] E. Meijering. A chronology of interpolation: from ancient astronomy to modern signal and image processing , 2002, Proc. IEEE.