A Numeric Library for Use in Modelica Simulations with Lapack, SuperLU, Interpolation, and MatrixIO

This paper introduces a numerical Modelica library that provides access to some of the most well-known powerful libraries for numerical methods. Our approach has been to develop wrappers that allow Modelica users easy access as functions both from textual and graphical Modelica environments . This library also includes additional external functions withcorresponding Modelica wrappers to interpolate data and to read/write matrix data from/to files.

[1]  James Demmel,et al.  A Supernodal Approach to Sparse Partial Pivoting , 1999, SIAM J. Matrix Anal. Appl..

[2]  E. Meijering,et al.  A chronology of interpolation: from ancient astronomy to modern signal and image processing , 2002, Proc. IEEE.

[3]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[4]  Peter A. Fritzson,et al.  Principles of object-oriented modeling and simulation with Modelica 2.1 , 2004 .

[5]  Boris I. Kvasov,et al.  Methods of Shape-Preserving Spline Approximation , 2000 .

[6]  G. Arfken Mathematical Methods for Physicists , 1967 .

[7]  B. Barsky,et al.  An Introduction to Splines for Use in Computer Graphics and Geometric Modeling , 1987 .

[8]  R. F. Boisvert,et al.  The Matrix Market Exchange Formats: Initial Design | NIST , 1996 .

[9]  William H. Press,et al.  Numerical recipes in FORTRAN (2nd ed.): the art of scientific computing , 1992 .

[10]  Xiaoye S. Li,et al.  SuperLU Users'' Guide , 1997 .

[11]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[12]  Richard F. Barrett,et al.  Matrix Market: a web resource for test matrix collections , 1996, Quality of Numerical Software.

[13]  Iain S. Duff,et al.  Users' guide for the Harwell-Boeing sparse matrix collection (Release 1) , 1992 .

[14]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[15]  Adrian Pop,et al.  The OpenModelica Modeling, Simulation, and Software Development Environment , 2005 .

[16]  E. Meijering A chronology of interpolation: from ancient astronomy to modern signal and image processing , 2002, Proc. IEEE.