Recent Developments in Variational Multiscale Methods for Large-Eddy Simulation of Turbulent Flow

The variational multiscale method is reviewed as a framework for developing computational methods for large-eddy simulation of turbulent flow. In contrast to other articles reviewing this topic, which focused on large-eddy simulation of turbulent incompressible flow, this study covers further aspects of numerically simulating turbulent flow as well as applications beyond incompressible single-phase flow. The various concepts for subgrid-scale modeling within the variational multiscale method for large-eddy simulation proposed by researchers in this field to date are illustrated. These conceptions comprise (i) implicit large-eddy simulation, represented by residual-based and stabilized methods, (ii) functional subgrid-scale modeling via small-scale subgrid-viscosity models and (iii) structural subgrid-scale modeling via the introduction of multifractal subgrid scales. An overview on exemplary numerical test cases to which the reviewed methods have been applied in the past years is provided, including explicit computational results obtained from turbulent channel flow. Wall-layer modeling, passive and active scalar transport as well as developments for large-eddy simulation of turbulent two-phase flow and combustion are discussed to complete this exposition.

[1]  Christer Fureby,et al.  Large-Eddy Simulation: Current Capabilities, Recommended Practices, and Future Research , 2009 .

[2]  S. Mittal,et al.  Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements , 1992 .

[3]  P. Spalart Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach , 1997 .

[4]  Jean-Luc Guermond,et al.  Mathematical Perspectives on Large Eddy Simulation Models for Turbulent Flows , 2004 .

[5]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[6]  W. Wall,et al.  Variational multiscale methods for premixed combustion based on a progress-variable approach , 2011 .

[7]  Gretar Tryggvason,et al.  Direct Numerical Simulations of Gas–Liquid Multiphase Flows: Preface , 2011 .

[8]  Santiago Badia,et al.  Assessment of variational multiscale models for the large eddy simulation of turbulent incompressible flows , 2015 .

[9]  William Layton,et al.  Weak imposition of “no-slip” conditions in finite element methods , 1999 .

[10]  S. Collis,et al.  Monitoring unresolved scales in multiscale turbulence modeling , 2001 .

[11]  Bernhard Müller,et al.  Low-Mach-Number Asymptotics of the Navier-Stokes Equations , 1998 .

[12]  A. W. Vreman The filtering analog of the variational multiscale method in large-eddy simulation , 2003 .

[13]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .

[14]  A. T. Fedorchenko A model of unsteady subsonic flow with acoustics excluded , 1997 .

[15]  Benedikt Schott,et al.  A new face-oriented stabilized XFEM approach for 2D and 3D incompressible Navier–Stokes equations , 2014 .

[16]  P. Moin,et al.  A dynamic subgrid‐scale model for compressible turbulence and scalar transport , 1991 .

[17]  P. Hansbo,et al.  Fictitious domain finite element methods using cut elements , 2012 .

[18]  Stefanie Elgeti,et al.  Deforming Fluid Domains Within the Finite Element Method: Five Mesh-Based Tracking Methods in Comparison , 2015, 1501.05878.

[19]  Generation of Turbulent Inlet Conditions for Thermal/Velocity Boundary Layer Simulations , 2006 .

[20]  P. Sagaut,et al.  A finite-volume variational multiscale method coupled with a discrete interpolation filter for large-eddy simulation of isotropic turbulence and fully developed channel flow , 2006 .

[21]  Ekkehard Ramm,et al.  A three-level finite element method for the instationary incompressible Navier?Stokes equations , 2004 .

[22]  W. Wall,et al.  An extended residual-based variational multiscale method for two-phase flow including surface tension , 2011 .

[23]  Pavel B. Bochev,et al.  On stabilized finite element methods for the Stokes problem in the small time step limit , 2007 .

[24]  T. Belytschko,et al.  An Extended Finite Element Method for Two-Phase Fluids , 2003 .

[25]  P. Moin,et al.  Approximate Wall Boundary Conditions in the Large-Eddy Simulation of High Reynolds Number Flow , 2000 .

[26]  F. Toschi,et al.  Acceleration and vortex filaments in turbulence , 2005, nlin/0501041.

[27]  Volker John,et al.  On large Eddy simulation and variational multiscale methods in the numerical simulation of turbulent incompressible flows , 2006 .

[28]  J. Deardorff A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers , 1970, Journal of Fluid Mechanics.

[29]  P. Moin,et al.  Numerical Simulation of Turbulent Flows , 1984 .

[30]  L. Berselli,et al.  Mathematics of Large Eddy Simulation of Turbulent Flows , 2005 .

[31]  John Kim,et al.  DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOWS UP TO RE=590 , 1999 .

[32]  H. Pitsch LARGE-EDDY SIMULATION OF TURBULENT COMBUSTION , 2006 .

[33]  K. Jansen,et al.  An evaluation of the variational multiscale model for large-eddy simulation while using a hierarchical basis , 2002 .

[34]  Thierry Poinsot,et al.  Large Eddy Simulations of gaseous flames in gas turbine combustion chambers , 2012 .

[35]  Wolfgang A. Wall,et al.  Residual‐based variational multiscale methods for laminar, transitional and turbulent variable‐density flow at low Mach number , 2011 .

[36]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[37]  Roland Becker,et al.  A finite element pressure gradient stabilization¶for the Stokes equations based on local projections , 2001 .

[38]  P. Moin,et al.  A dynamic localization model for large-eddy simulation of turbulent flows , 1995, Journal of Fluid Mechanics.

[39]  Hervé Jeanmart,et al.  Investigation of eddy-viscosity models modified using discrete filters : A simplified regularized variational multiscale model and an enhanced field model , 2007 .

[40]  P. Moin,et al.  Grid-point requirements for large eddy simulation: Chapman’s estimates revisited , 2012 .

[41]  Eugenio Oñate,et al.  Derivation of stabilized equations for numerical solution of advective-diffusive transport and fluid flow problems , 1998 .

[42]  Thomas J. R. Hughes,et al.  The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence , 2001 .

[43]  Tayfun E. Tezduyar,et al.  Finite element stabilization parameters computed from element matrices and vectors , 2000 .

[44]  U. Piomelli,et al.  Wall-layer models for large-eddy simulations , 2008 .

[45]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[46]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[47]  Wolfgang A. Wall,et al.  A new approach to wall modeling in LES of incompressible flow via function enrichment , 2015, J. Comput. Phys..

[48]  M. Kronbichler,et al.  An algebraic variational multiscale-multigrid method for large eddy simulation of turbulent flow , 2010 .

[49]  G.,et al.  TOWARD THE LARGE-EDDY SIMULATION OF COMPRESSIBLE TURBULENT FLOWS , 2022 .

[50]  Volker Gravemeier,et al.  Scale-separating operators for variational multiscale large eddy simulation of turbulent flows , 2006, J. Comput. Phys..

[51]  Hiroshi Kawamura,et al.  DNS of turbulent heat transfer in channel flow with low to medium-high Prandtl number fluid , 1998 .

[52]  P. Spalart Detached-Eddy Simulation , 2009 .

[53]  P. Moin,et al.  Dynamic wall modeling for large-eddy simulation of complex turbulent flows , 2002 .

[54]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[55]  A. Oberai,et al.  A two-parameter variational multiscale method for large eddy simulation , 2008 .

[56]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[57]  Johan Larsson,et al.  Large eddy simulation with modeled wall-stress: recent progress and future directions , 2016 .

[58]  Kenneth E. Jansen,et al.  A stabilized finite element method for the incompressible Navier–Stokes equations using a hierarchical basis , 2001 .

[59]  Macarena Gómez Mármol,et al.  Numerical analysis of a finite element projection-based VMS turbulence model with wall laws , 2015 .

[60]  A. Leonard Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows , 1975 .

[61]  Wolfgang A. Wall,et al.  An algebraic variational multiscale-multigrid method for large-eddy simulation: generalized-α time integration, Fourier analysis and application to turbulent flow past a square-section cylinder , 2011 .

[62]  S. Scott Collis,et al.  The DG/VMS Method for Unified Turbulence Simulation , 2002 .

[63]  Nikolaus A. Adams,et al.  Direct modelling of subgrid scales of turbulence in large eddy simulations , 2002 .

[64]  Thomas J. R. Hughes,et al.  Conservation properties for the Galerkin and stabilised forms of the advection–diffusion and incompressible Navier–Stokes equations , 2005 .

[65]  Pierre Sagaut,et al.  Towards large eddy simulation of isothermal two-phase flows: Governing equations and a priori tests , 2007 .

[66]  Alain Dervieux,et al.  Unstructured multigridding by volume agglomeration: Current status , 1992 .

[67]  Victor M. Calo,et al.  Residual-based multiscale turbulence modeling: Finite volume simulations of bypass transition , 2005 .

[68]  Maxim A. Olshanskii,et al.  Grad–div stabilization and subgrid pressure models for the incompressible Navier–Stokes equations , 2009 .

[69]  Volker John,et al.  Finite element error analysis for a projection-based variational multiscale method with nonlinear eddy viscosity , 2008 .

[70]  Werner J. A. Dahm,et al.  Dual-plane stereo particle image velocimetry measurements of velocity gradient tensor fields in turbulent shear flow. II. Experimental results , 2006 .

[71]  K. R. Sreenivasan,et al.  Turbulent cascades , 1995 .

[72]  Ray S. Tuminaro,et al.  Parallel Smoothed Aggregation Multigrid : Aggregation Strategies on Massively Parallel Machines , 2000, ACM/IEEE SC 2000 Conference (SC'00).

[73]  Leonhard Kleiser,et al.  High-pass filtered eddy-viscosity models for large-eddy simulations of transitional and turbulent flow , 2005 .

[74]  Dimitri J. Mavriplis,et al.  A 3D AGGLOMERATION MULTIGRID SOLVER FOR THE REYNOLDS-AVERAGED NAVIER-STOKES EQUATIONS ON UNSTRUCTURED MESHES , 1995 .

[75]  Peter Hansbo,et al.  Fictitious domain methods using cut elements: III. A stabilized Nitsche method for Stokes’ problem , 2014 .

[76]  I. Akkerman,et al.  Isogeometric analysis of free-surface flow , 2011, J. Comput. Phys..

[77]  A. Harten Multiresolution representation of data: a general framework , 1996 .

[78]  Miltiadis V. Papalexandris,et al.  Time-accurate calculation of variable density flows with strong temperature gradients and combustion , 2006, J. Comput. Phys..

[79]  R. Codina Stabilized finite element approximation of transient incompressible flows using orthogonal subscales , 2002 .

[80]  W. Dahm,et al.  A new multifractal subgrid-scale model for large-eddy simulation , 2002 .

[81]  Ugo Piomelli,et al.  Large-eddy simulation: achievements and challenges , 1999 .

[82]  Ramon Codina,et al.  Finite element approximation of turbulent thermally coupled incompressible flows with numerical sub-grid scale modeling , 2010 .

[83]  Volker John,et al.  Numerical Studies of Finite Element Variational Multiscale Methods for Turbulent Flow Simulations , 2010 .

[84]  P. Moin,et al.  Effects of the Computational Time Step on Numerical Solutions of Turbulent Flow , 1994 .

[85]  Wolfgang A. Wall,et al.  Time-dependent subgrid scales in residual-based large eddy simulation of turbulent channel flow , 2010 .

[86]  U. Piomelli,et al.  Two-layer approximate boundary conditions for large-eddy simulations , 1996 .

[87]  C. Meneveau,et al.  Scale-Invariance and Turbulence Models for Large-Eddy Simulation , 2000 .

[88]  M. Germano,et al.  Turbulence: the filtering approach , 1992, Journal of Fluid Mechanics.

[89]  Volker Gravemeier,et al.  Variational Multiscale Large Eddy Simulation of Turbulent Flow in a Diffuser , 2007 .

[90]  S. Zaleski,et al.  DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW , 1999 .

[91]  J. P. Boris,et al.  New insights into large eddy simulation , 1992 .

[92]  J. Fröhlich,et al.  Hybrid LES/RANS methods for the simulation of turbulent flows , 2008 .

[93]  Volker Gravemeier,et al.  Numerical simulation of premixed combustion using an enriched finite element method , 2009, J. Comput. Phys..

[94]  R. Lahey,et al.  Computation of incompressible bubble dynamics with a stabilized finite element level set method , 2005 .

[95]  E. Oñate,et al.  A locally extended finite element method for the simulation of multi-fluid flows using the Particle Level Set method , 2015 .

[96]  Leonhard Kleiser,et al.  Subgrid‐scale energy transfer in the near‐wall region of turbulent flows , 1994 .

[97]  Alessandro Russo,et al.  Bubble stabilization of finite element methods for the linearized incompressible Navier-Stokes equations , 1996 .

[98]  P. Hansbo,et al.  A cut finite element method for a Stokes interface problem , 2012, 1205.5684.

[99]  J. Lumley,et al.  A First Course in Turbulence , 1972 .

[100]  S. Menon,et al.  Large-Eddy Simulation of Turbulent Premixed Flames in the Flamelet Regime , 2001 .

[101]  K. Sreenivasan FRACTALS AND MULTIFRACTALS IN FLUID TURBULENCE , 1991 .

[102]  T. Belytschko,et al.  The extended/generalized finite element method: An overview of the method and its applications , 2010 .

[103]  A. W. Vremana An eddy-viscosity subgrid-scale model for turbulent shear flow : Algebraic theory and applications , 2004 .

[104]  William Layton,et al.  Explicitly uncoupled VMS stabilization of fluid flow , 2011 .

[105]  P. Spalart,et al.  A New Version of Detached-eddy Simulation, Resistant to Ambiguous Grid Densities , 2006 .

[106]  Volker Gravemeier,et al.  A novel formulation for Neumann inflow boundary conditions in biomechanics , 2012, International journal for numerical methods in biomedical engineering.

[107]  T. Hughes,et al.  Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .

[108]  J. Ferziger,et al.  Improved turbulence models based on large eddy simulation of homogeneous, incompressible, turbulent flows , 1983 .

[109]  D. Lilly,et al.  A proposed modification of the Germano subgrid‐scale closure method , 1992 .

[110]  Volker Gravemeier,et al.  Multifractal subgrid-scale modeling within a variational multiscale method for large-eddy simulation of turbulent flow , 2013, J. Comput. Phys..

[111]  Denis Veynante,et al.  Turbulent combustion modeling , 2002, VKI Lecture Series.

[112]  S. Collis,et al.  Partition selection in multiscale turbulence modeling , 2006 .

[113]  Yuri Bazilevs,et al.  High-performance computing of wind turbine aerodynamics using isogeometric analysis , 2011 .

[114]  Erik Burman,et al.  Stabilized finite element methods for the generalized Oseen problem , 2007 .

[115]  Tomas Bengtsson,et al.  Fictitious domain methods using cut elements : III . A stabilized Nitsche method for Stokes ’ problem , 2012 .

[116]  Stephen B. Pope,et al.  Paradigms in turbulent combustion research , 2005 .

[117]  Volker Gravemeier,et al.  The variational multiscale method for laminar and turbulent flow , 2006 .

[118]  Daniele Carati,et al.  Large-eddy simulation without filter , 2005 .

[119]  Wolfgang A. Wall,et al.  An algebraic variational multiscale-multigrid method based on plain aggregation for convection-diffusion problems , 2009 .

[120]  Parviz Moin,et al.  ADVANCES IN LARGE EDDY SIMULATION METHODOLOGY FOR COMPLEX FLOWS , 2002, Proceeding of Second Symposium on Turbulence and Shear Flow Phenomena.

[121]  Robert W. Dibble,et al.  Combustion: Physical and Chemical Fundamentals, Modelling and Simulation, Experiments, Pollutant Formation , 1996 .

[122]  Nikolaus A. Adams,et al.  An adaptive local deconvolution method for implicit LES , 2005, J. Comput. Phys..

[123]  Wolfgang A. Wall,et al.  A semi‐Lagrangean time‐integration approach for extended finite element methods , 2014 .

[124]  Wolfgang A. Wall,et al.  Towards a taxonomy for multiscale methods in computational mechanics: building blocks of existing methods , 2007 .

[125]  Tom De Mulder,et al.  The role of bulk viscosity in stabilized finite element formulations for incompressible flow: A review , 1998 .

[126]  Wolfgang A. Wall,et al.  An algebraic variational multiscale–multigrid method for large‐eddy simulation of turbulent pulsatile flows in complex geometries with detailed insight into pulmonary airway flow , 2013 .

[127]  R. Codina,et al.  Time dependent subscales in the stabilized finite element approximation of incompressible flow problems , 2007 .

[128]  Thomas J. R. Hughes,et al.  Finite element modeling of blood flow in arteries , 1998 .

[129]  David Sondak,et al.  A residual based eddy viscosity model for the large eddy simulation of turbulent flows , 2014 .

[130]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[131]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .

[132]  K. Bray,et al.  A unified statistical model of the premixed turbulent flame , 1977 .

[133]  J. Koseff,et al.  Application of a dynamic subgrid-scale model to turbulent recirculating flows , 1993 .

[134]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[135]  Gert Lube,et al.  Analysis of a variational multiscale method for Large-Eddy simulation and its application to homogeneous isotropic turbulence , 2010 .

[136]  Volker Gravemeier,et al.  A consistent dynamic localization model for large eddy simulation of turbulent flows based on a variational formulation , 2006, J. Comput. Phys..

[137]  U. Piomelli,et al.  Subgrid-Scale Models for Compressible Large-Eddy Simulations , 2000, Theoretical and Computational Fluid Dynamics.

[138]  Gregory C. Burton,et al.  The nonlinear large-eddy simulation method applied to Sc≈1 and Sc⪢1 passive-scalar mixing , 2008 .

[139]  Gregory C. Burton,et al.  Multifractal subgrid-scale modeling for large-eddy simulation. I. Model development and a priori testing , 2005 .

[140]  A. Masud,et al.  A variational multiscale method for incompressible turbulent flows: Bubble functions and fine scale fields , 2011 .

[141]  N. Adams,et al.  An approximate deconvolution procedure for large-eddy simulation , 1999 .

[142]  Wolfgang A. Wall,et al.  An isogeometric variational multiscale method for large-eddy simulation of coupled multi-ion transport in turbulent flow , 2013, J. Comput. Phys..

[143]  D. Spalding A Single Formula for the “Law of the Wall” , 1961 .

[144]  Wolfgang A. Wall,et al.  An algebraic variational multiscale-multigrid method for large-eddy simulation of turbulent variable-density flow at low Mach number , 2010, J. Comput. Phys..

[145]  C. Meneveau,et al.  The multifractal nature of turbulent energy dissipation , 1991, Journal of Fluid Mechanics.

[146]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[147]  Isaac Harari,et al.  Semidiscrete formulations for transient transport at small time steps , 2007 .

[148]  Paul Lin,et al.  Performance of fully coupled algebraic multilevel domain decomposition preconditioners for incompressible flow and transport , 2006 .

[149]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[150]  Charbel Farhat,et al.  A Variational Multiscale Method for the Large Eddy Simulation of Compressible Turbulent Flows on Unstructured Meshes - Application to vortex shedding , 2004 .

[151]  Wolfgang A. Wall,et al.  An embedded Dirichlet formulation for 3D continua , 2010 .

[152]  Thierry Coupez,et al.  Stabilized finite element method for incompressible flows with high Reynolds number , 2010, J. Comput. Phys..

[153]  W. Layton,et al.  A connection between subgrid scale eddy viscosity and mixed methods , 2002, Appl. Math. Comput..

[154]  J. Domaradzki,et al.  The subgrid-scale estimation model in the physical space representation , 1999 .

[155]  Assad A. Oberai,et al.  Variational formulation of the Germano identity for the Navier–Stokes equations , 2005 .

[156]  W. Wall,et al.  A face‐oriented stabilized Nitsche‐type extended variational multiscale method for incompressible two‐phase flow , 2015 .

[157]  O. C. Zienkiewicz,et al.  The Finite Element Method: Its Basis and Fundamentals , 2005 .

[158]  S. Pope Turbulent Flows: FUNDAMENTALS , 2000 .

[159]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[160]  Thomas-Peter Fries,et al.  The extended finite element method for two-phase and free-surface flows: A systematic study , 2011, J. Comput. Phys..

[161]  Rs Cant,et al.  An Introduction to Turbulent Reacting Flows , 2007 .

[162]  James A. Sethian,et al.  THE DERIVATION AND NUMERICAL SOLUTION OF THE EQUATIONS FOR ZERO MACH NUMBER COMBUSTION , 1985 .

[163]  Volker John,et al.  A Finite Element Variational Multiscale Method for the Navier-Stokes Equations , 2005, SIAM J. Sci. Comput..

[164]  Franco Brezzi,et al.  $b=\int g$ , 1997 .

[165]  Volker John,et al.  A Review of Variational Multiscale Methods for the Simulation of Turbulent Incompressible Flows , 2015 .

[166]  Erik Burman,et al.  Local Projection Stabilization for the Oseen Problem and its Interpretation as a Variational Multiscale Method , 2006, SIAM J. Numer. Anal..

[167]  Volker John,et al.  A variational multiscale method for turbulent flow simulation with adaptive large scale space , 2010, J. Comput. Phys..

[168]  Wolfgang A. Wall,et al.  A mixed/hybrid Dirichlet formulation for wall-bounded flow problems including turbulent flow , 2012 .

[169]  R. Sani,et al.  Incompressible Flow and the Finite Element Method, Volume 1, Advection-Diffusion and Isothermal Laminar Flow , 1998 .

[170]  Dean R. Chapman,et al.  Computational Aerodynamics Development and Outlook , 1979 .

[171]  Gregory C. Burton,et al.  Multifractal subgrid-scale modeling for large-eddy simulation. II. Backscatter limiting and a posteriori evaluation , 2005 .

[172]  Onkar Sahni,et al.  A parallel adaptive mesh method for the numerical simulation of multiphase flows , 2013 .

[173]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[174]  Wolfgang A. Wall,et al.  An extended algebraic variational multiscale-multigrid-multifractal method (XAVM4) for large-eddy simulation of turbulent two-phase flow , 2018, J. Comput. Phys..

[175]  J. Guermond Stabilization of Galerkin approximations of transport equations by subgrid modelling , 1999 .

[176]  P. Hansbo,et al.  Edge stabilization for Galerkin approximations of convection?diffusion?reaction problems , 2004 .

[177]  Wolfgang A. Wall,et al.  Multifractal subgrid-scale modeling within a variational multiscale method for large-eddy simulation of passive-scalar mixing in turbulent flow at low and high Schmidt numbers , 2014 .

[178]  J. Ferziger,et al.  Improved subgrid-scale models for large-eddy simulation , 1980 .

[179]  B. Geurts Elements of direct and large-eddy simulation , 2003 .

[180]  Miguel A. Fernández,et al.  Continuous Interior Penalty Finite Element Method for Oseen's Equations , 2006, SIAM J. Numer. Anal..

[181]  W. Dahm,et al.  Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. Part 2. Sc≈1 , 1998, Journal of Fluid Mechanics.

[182]  T. Poinsot,et al.  Theoretical and numerical combustion , 2001 .

[183]  Prasad,et al.  Multifractal nature of the dissipation field of passive scalars in fully turbulent flows. , 1988, Physical review letters.

[184]  H. Baum,et al.  The Equations of Motion for Thermally Driven, Buoyant Flows. , 1978, Journal of research of the National Bureau of Standards.

[185]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[186]  T. Hughes,et al.  Two classes of mixed finite element methods , 1988 .

[187]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[188]  M. Lesieur,et al.  New Trends in Large-Eddy Simulations of Turbulence , 1996 .

[189]  Alvaro L. G. A. Coutinho,et al.  Edge‐based finite element implementation of the residual‐based variational multiscale method , 2009 .

[190]  Ursula Rasthofer,et al.  Computational Multiscale Methods for Turbulent Single and Two-Phase Flows , 2015 .

[191]  Charles Meneveau,et al.  Germano identity-based subgrid-scale modeling: A brief survey of variations on a fertile theme , 2012 .

[192]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[193]  Steven J. Hulshoff,et al.  A modal-based multiscale method for large eddy simulation , 2007, J. Comput. Phys..

[194]  Laurent Gicquel,et al.  Multiscale and Multiresolution Approaches in TurbulenceP. Sagaut, S. Deck, and M. Terracol, 2nd ed., Imperial College Press, London, 2013, 448 pp., 128 hardcover and 96 ebook. , 2015 .

[195]  C. Meneveau,et al.  On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet , 1994, Journal of Fluid Mechanics.

[196]  Ekkehard Ramm,et al.  Large eddy simulation of turbulent incompressible flows by a three‐level finite element method , 2005 .

[197]  Wolfgang A. Wall,et al.  An algebraic variational multiscale‐multigrid‐multifractal method (AVM4) for large‐eddy simulation of turbulent variable–density flow at low Mach number , 2014 .

[198]  P. Sagaut Large Eddy Simulation for Incompressible Flows , 2001 .

[199]  David R. Dowling,et al.  Experimental assessment of fractal scale similarity in turbulent flows. Part 3. Multifractal scaling , 1997, Journal of Fluid Mechanics.

[200]  Johannes Janicka,et al.  Large Eddy Simulation of Turbulent Combustion Systems , 2005 .

[201]  Leopoldo P. Franca,et al.  On a two‐level finite element method for the incompressible Navier–Stokes equations , 2000 .

[202]  Weiming Liu,et al.  A triple level finite element method for large eddy simulations , 2009, J. Comput. Phys..

[203]  Ramon Codina,et al.  Large eddy simulation of low Mach number flows using dynamic and orthogonal subgrid scales , 2014 .

[204]  Marian Brezina,et al.  Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems , 2005, Computing.

[205]  I. Akkerman,et al.  A conservative level set method suitable for variable-order approximations and unstructured meshes , 2011, J. Comput. Phys..

[206]  P. Sagaut,et al.  Boundary Conditions for Large-Eddy Simulation of Compressible Flows , 2009 .

[207]  Onkar Sahni,et al.  Scalable Implicit Flow Solver for Realistic Wing Simulations with Flow Control , 2014, Computing in Science & Engineering.

[208]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[209]  Gregory Charles Burton A multifractal subgrid-scale model for the large-eddy simulation of turbulent flows , 2003 .

[210]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[211]  W. Rodi,et al.  Closure Strategies for Turbulent and Transitional Flows: Introduction to Large Eddy Simulation of Turbulent Flows , 2002 .

[212]  Bernardus J. Geurts,et al.  A multi-scale formulation for compressible turbulent flows suitable for general variational discretization techniques , 2007 .

[213]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[214]  P. Moin,et al.  Subgrid-scale backscatter in turbulent and transitional flows , 1991 .

[215]  Rolf Stenberg,et al.  On some techniques for approximating boundary conditions in the finite element method , 1995 .

[216]  Erik Burman,et al.  Numerical Approximation of Large Contrast Problems with the Unfitted Nitsche Method , 2011 .

[217]  Thor Gjesdal,et al.  Variational multiscale turbulence modelling in a high order spectral element method , 2009, J. Comput. Phys..

[218]  Eugenio Oñate,et al.  Computation of turbulent flows using a finite calculus–finite element formulation , 2007 .

[219]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[220]  Charbel Farhat,et al.  A dynamic variational multiscale method for large eddy simulations on unstructured meshes , 2006 .

[221]  U. Schumann Subgrid Scale Model for Finite Difference Simulations of Turbulent Flows in Plane Channels and Annuli , 1975 .