Comprehensive Characterization of the Major Presynaptic Elements to the Drosophila OFF Motion Detector

[1]  Yvette E. Fisher,et al.  Orientation Selectivity Sharpens Motion Detection in Drosophila , 2015, Neuron.

[2]  Claude Desplan,et al.  Visual circuits in flies: beginning to see the whole picture , 2015, Current Opinion in Neurobiology.

[3]  A. Borst,et al.  Functional Specialization of Neural Input Elements to the Drosophila ON Motion Detector , 2015, Current Biology.

[4]  A. Borst,et al.  Common circuit design in fly and mammalian motion vision , 2015, Nature Neuroscience.

[5]  Alexander Borst,et al.  Neural Circuit to Integrate Opposing Motions in the Visual Field , 2015, Cell.

[6]  Jonathan P. Dyhr,et al.  Luminance-dependent visual processing enables moth flight in low light , 2015, Science.

[7]  Aljoscha Nern,et al.  Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system , 2015, Proceedings of the National Academy of Sciences.

[8]  Damon A. Clark,et al.  Processing properties of ON and OFF pathways for Drosophila motion detection , 2014, Nature.

[9]  Ian A. Meinertzhagen,et al.  Candidate Neural Substrates for Off-Edge Motion Detection in Drosophila , 2014, Current Biology.

[10]  Michael B. Reiser,et al.  Direct Observation of ON and OFF Pathways in the Drosophila Visual System , 2014, Current Biology.

[11]  Srinivas C. Turaga,et al.  Space-time wiring specificity supports direction selectivity in the retina , 2014, Nature.

[12]  Michael H. Dickinson,et al.  Cellular mechanisms for integral feedback in visually guided behavior , 2014, Proceedings of the National Academy of Sciences.

[13]  Bart G Borghuis,et al.  Excitatory Synaptic Inputs to Mouse On-Off Direction-Selective Retinal Ganglion Cells Lack Direction Tuning , 2014, The Journal of Neuroscience.

[14]  A. Borst,et al.  Neural Circuit Components of the Drosophila OFF Motion Vision Pathway , 2014, Current Biology.

[15]  Alexander Borst,et al.  Optogenetic and Pharmacologic Dissection of Feedforward Inhibition in Drosophila Motion Vision , 2014, The Journal of Neuroscience.

[16]  Botond Roska,et al.  The First Stage of Cardinal Direction Selectivity Is Localized to the Dendrites of Retinal Ganglion Cells , 2013, Neuron.

[17]  Louis K. Scheffer,et al.  A visual motion detection circuit suggested by Drosophila connectomics , 2013, Nature.

[18]  G. Rubin,et al.  A directional tuning map of Drosophila elementary motion detectors , 2013, Nature.

[19]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[20]  Damon A. Clark,et al.  Modular Use of Peripheral Input Channels Tunes Motion-Detecting Circuitry , 2013, Neuron.

[21]  Michael B. Reiser,et al.  Contributions of the 12 Neuron Classes in the Fly Lamina to Motion Vision , 2013, Neuron.

[22]  J. Marvin,et al.  Two-Photon Imaging of Nonlinear Glutamate Release Dynamics at Bipolar Cell Synapses in the Mouse Retina , 2013, The Journal of Neuroscience.

[23]  M. Schnitzer,et al.  GABAergic Lateral Interactions Tune the Early Stages of Visual Processing in Drosophila , 2013, Neuron.

[24]  Alexander Borst,et al.  Object tracking in motion-blind flies , 2013, Nature Neuroscience.

[25]  Alexander Borst,et al.  Functional Specialization of Parallel Motion Detection Circuits in the Fly , 2013, The Journal of Neuroscience.

[26]  M. Bethge,et al.  Spikes in Mammalian Bipolar Cells Support Temporal Layering of the Inner Retina , 2013, Current Biology.

[27]  R. Masland The Neuronal Organization of the Retina , 2012, Neuron.

[28]  Jasper Akerboom,et al.  Optimization of a GCaMP Calcium Indicator for Neural Activity Imaging , 2012, The Journal of Neuroscience.

[29]  T. J. Wardill,et al.  Multiple Spectral Inputs Improve Motion Discrimination in the Drosophila Visual System , 2012, Science.

[30]  Gerald M Rubin,et al.  Using translational enhancers to increase transgene expression in Drosophila , 2012, Proceedings of the National Academy of Sciences.

[31]  A. Borst,et al.  Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila , 2012, Journal of Comparative Physiology A.

[32]  Ian A. Meinertzhagen,et al.  Cholinergic Circuits Integrate Neighboring Visual Signals in a Drosophila Motion Detection Pathway , 2011, Current Biology.

[33]  Ian A. Meinertzhagen,et al.  Wiring Economy and Volume Exclusion Determine Neuronal Placement in the Drosophila Brain , 2011, Current Biology.

[34]  A. Borst,et al.  Seeing Things in Motion: Models, Circuits, and Mechanisms , 2011, Neuron.

[35]  Damon A. Clark,et al.  Defining the Computational Structure of the Motion Detector in Drosophila , 2011, Neuron.

[36]  A. Borst,et al.  Internal Structure of the Fly Elementary Motion Detector , 2011, Neuron.

[37]  Alexander Borst,et al.  Flight Activity Alters Velocity Tuning of Fly Motion-Sensitive Neurons , 2011, The Journal of Neuroscience.

[38]  Alexander Borst,et al.  ON and OFF pathways in Drosophila motion vision , 2010, Nature.

[39]  A. Borst,et al.  Central gating of fly optomotor response , 2010, Proceedings of the National Academy of Sciences.

[40]  Michael B. Reiser,et al.  Walking Modulates Speed Sensitivity in Drosophila Motion Vision , 2010, Current Biology.

[41]  Alexander Borst,et al.  Visualizing retinotopic half-wave rectified input to the motion detection circuitry of Drosophila , 2010, Nature Neuroscience.

[42]  B Schnell,et al.  Processing of horizontal optic flow in three visual interneurons of the Drosophila brain. , 2010, Journal of neurophysiology.

[43]  M. Dickinson,et al.  Active flight increases the gain of visual motion processing in Drosophila , 2010, Nature Neuroscience.

[44]  Andreas S. Thum,et al.  The Neural Substrate of Spectral Preference in Drosophila , 2008, Neuron.

[45]  A. Borst,et al.  Response Properties of Motion-Sensitive Visual Interneurons in the Lobula Plate of Drosophila melanogaster , 2008, Current Biology.

[46]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure , 1989, Cell and Tissue Research.

[47]  Karl Geokg Götz,et al.  Optomotorische Untersuchung des visuellen systems einiger Augenmutanten der Fruchtfliege Drosophila , 1964, Kybernetik.

[48]  T. Kitamoto Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. , 2001, Journal of neurobiology.

[49]  M. Land Visual acuity in insects. , 1997, Annual review of entomology.

[50]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[51]  J. Dowling,et al.  Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. , 1969, Journal of neurophysiology.

[52]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[53]  Santiago Ramón y Cajal,et al.  Contribución al conocimiento de los centros nerviosos de los insectos , 1915 .