A Neurocontrol Paradigm for Intelligent Process Control using Evolutionary Reinforcement Learning

ii DECLARATION I, the undersigned, hereby declare that the work contained in this thesis is my own original work and has not previously in its entirety or in part been submitted at any university for a degree. iii Now to Him who is able to keep us from stumbling, And to bring us faultless Before the presence of His glory with exceeding joy, To God our Saviour, Who alone is wise, Be glory and majesty, Dominion and power, Both now and forever. Amen. iv ACKNOWLEDGEMENTS My Father in heaven for refusing to let me go. Professor Risto Miikkulainen, for his immeasurable guidance at the University of Texas at Austin. Friends and family, for their love, kindness and patience. Loving thanks to my wife, Anje, who put up with "Alex world" for long enough. Balancing multiple business and operational objectives within a comprehensive control strategy is a complex configuration task. Non-linearities and complex multiple process interactions combine as formidable cause-effect interrelationships. A clear understanding of these relationships is often instrumental to meeting the process control objectives. However, such control system configurations are generally conceived in a qualitative manner and with pronounced reliance on past effective configurations (Foss, 1973). Thirty years after Foss' critique, control system configuration remains a largely heuristic affair. Biological methods of processing information are fundamentally different from the methods used in conventional control techniques. Biological neural mechanisms (i.e., intelligent systems) are based on partial models, largely devoid of the system's underlying natural laws. Neural control strategies are carried out without a pure mathematical formulation of the task or the environment. Rather, biological systems rely on knowledge of cause-effect interactions, creating robust control strategies from ill-defined dynamic systems. Dynamic modelling may be either phenomenological or empirical. Phenomenological models are derived from first principles and typically consist of algebraic and differential equations. First principles modelling is both time consuming and expensive. Vast data warehouses of historical plant data make empirical modelling attractive. Singular spectrum analysis (SSA) is a rapid model development technique for identifying dominant state variables from historical plant time series data. Since time series data invariably covers a limited region of the state space, SSA models are almost necessarily partial models. Interpreting and learning causal relationships from dynamic models requires sufficient feedback of the environment's state. Systemisation of the learning task is imperative. Reinforcement learning is a computational approach to understanding and automating goal-directed learning. This thesis aimed …

[1]  M. Houkari,et al.  A neural adaptive controller , 1993, Proceedings of IEEE Systems Man and Cybernetics Conference - SMC.

[2]  Efstratios N. Pistikopoulos,et al.  Optimal design of dynamic systems under uncertainty , 1996 .

[3]  William L. Luyben,et al.  Plantwide control design procedure , 1997 .

[4]  Lyle H. Ungar,et al.  A NEURAL NETWORK ARCHITECTURE THAT COMPUTES ITS OWN RELIABILITY , 1992 .

[5]  Reiko Tanese,et al.  Distributed Genetic Algorithms , 1989, ICGA.

[6]  André Desbiens,et al.  Distributed control at the Kidd Creek grinding plant. PartI : Control strategy design , 1997 .

[7]  Julian Morris,et al.  Artificial neural networks in process estimation and control , 1992, Autom..

[8]  G Martin,et al.  Nonlinear mill control. , 2001, ISA transactions.

[9]  Gerry Dozier,et al.  Adapting Particle Swarm Optimizationto Dynamic Environments , 2001 .

[10]  N. Ricker Optimal steady-state operation of the Tennessee Eastman challenge process , 1995 .

[11]  Efstratios N. Pistikopoulos,et al.  Robust stability considerations in optimal design of dynamic systems under uncertainty , 1997 .

[12]  T. J. McAvov,et al.  BASE CONTROL FOR THE TENNESSEE EASTMAN PROBLEM , 2001 .

[13]  Risto Miikkulainen,et al.  Forming Neural Networks Through Efficient and Adaptive Coevolution , 1997, Evolutionary Computation.

[14]  Lennart Ljung,et al.  Closed-loop identification revisited , 1999, Autom..

[15]  Lotfi A. Zadeh Causality is undefinable - toward a theory of hierarchical definability , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[16]  A. Banerjee,et al.  Control configuration design applied to the Tennessee Eastman plant-wide control problem , 1995 .

[17]  C. H. Sequin,et al.  Fault tolerance in artificial neural networks , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[18]  J. Savković-Stevanović Neural net controller by inverse modeling for a distillation plant , 1996 .

[19]  L. Tsimring,et al.  The analysis of observed chaotic data in physical systems , 1993 .

[20]  Long Ji Lin,et al.  Reinforcement Learning of Non-Markov Decision Processes , 1995, Artif. Intell..

[21]  Michel Cabassud,et al.  Development of adaptive neural networks for flexible control of batch processes , 1996 .

[22]  Robert M. Sanner,et al.  Gaussian Networks for Direct Adaptive Control , 1991, 1991 American Control Conference.

[23]  K S Narendra,et al.  IDENTIFICATION AND CONTROL OF DYNAMIC SYSTEMS USING NEURAL NETWORKS , 1990 .

[24]  Y.-H. Zhu,et al.  Application of neural networks to lysine production , 1996 .

[25]  David M. Himmelblau,et al.  Process control via artificial neural networks and reinforcement learning , 1992 .

[26]  John J. Grefenstette,et al.  Learning Sequential Decision Rules Using Simulation Models and Competition , 1990, Machine Learning.

[27]  Alex Zheng,et al.  Hierarchical procedure for plantwide control system synthesis , 1999 .

[28]  David E. Moriarty,et al.  Symbiotic Evolution of Neural Networks in Sequential Decision Tasks , 1997 .

[29]  G. P. King,et al.  Extracting qualitative dynamics from experimental data , 1986 .

[30]  Sigurd Skogestad,et al.  Closed operation of multivessel batch distillation: Experimental verification , 2000 .

[31]  M. Morari,et al.  Internal model control. VI: Extension to nonlinear systems , 1986 .

[32]  David D. Brengel,et al.  Multistep nonlinear predictive controller , 1989 .

[33]  David R. Jefferson,et al.  Selection in Massively Parallel Genetic Algorithms , 1991, ICGA.

[34]  L. S. Nelson Sequential Simplex Optimization , 1992 .

[35]  Risto Miikkulainen,et al.  Eugenic Neuro-Evolution for Reinforcement Learning , 2000, GECCO.

[36]  B. Babu,et al.  ADAPTIVE NETWORKS FOR FAULT DIAGNOSIS AND PROCESS CONTROL , 2002 .

[37]  N. Lawrence Ricker,et al.  Decentralized control of the Tennessee Eastman Challenge Process , 1996 .

[38]  Sigurd Skogestad,et al.  Plantwide controlA review and a new design procedure ” , 2013 .

[39]  D. G. Hulbert,et al.  Dynamic Behaviour in the Control of Milling Circuits , 1983 .

[40]  Samir W. Mahfoud Crowding and Preselection Revisited , 1992, PPSN.

[41]  D. G. Hulbert,et al.  Multivariable Control of an Industrial Grinding Circuit , 1980 .

[42]  Alexander S. Poznyak,et al.  Nonlinear adaptive trajectory tracking using dynamic neural networks , 1999, IEEE Trans. Neural Networks.

[43]  Marvin Minsky,et al.  Steps toward Artificial Intelligence , 1995, Proceedings of the IRE.

[44]  P. R. Lyman,et al.  Throughput Manipulation in Plantwide Control Structures , 1994 .

[45]  Raoul Velazco,et al.  SEU fault tolerance in artificial neural networks , 1995 .

[46]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[47]  Risto Miikkulainen,et al.  Evolving Neural Networks through Augmenting Topologies , 2002, Evolutionary Computation.

[48]  L. D. Whitley,et al.  Genetic Reinforcement Learning for Neurocontrol Problems , 2004, Machine Learning.

[49]  Alan S. Foss Critique of chemical process control theory , 1973 .

[50]  Allon Guez,et al.  ART based adaptive pole placement for neurocontrollers , 1991, Neural Networks.

[51]  Amir F. Atiya,et al.  Neuro-predictive process control using online controller adaptation , 2001, IEEE Trans. Control. Syst. Technol..

[52]  M. L. Luyben,et al.  Analyzing the interaction of design and control—2. reactor-separator-recycle system , 1994 .

[53]  Antti J. Niemi,et al.  A linear-quadratic-Gaussian control algorithm for sulphide ore grinding , 1987, Autom..

[54]  Zbigniew Michalewicz,et al.  Evolutionary Computation 2 , 2000 .

[55]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[56]  Yuval Davidor,et al.  A Naturally Occurring Niche and Species Phenomenon: The Model and First Results , 1991, ICGA.

[57]  Alex van Eck Conradie,et al.  Neurocontroller development for nonlinear processes utilising evolutionary reinforcement learning , 2000 .

[58]  Eva Sorensen,et al.  Optimal operation of multivessel batch distillation columns , 1999 .

[59]  Dale E. Seborg,et al.  Nonlinear Process Control , 1996 .

[60]  Risto Miikkulainen,et al.  Efficient Reinforcement Learning through Symbiotic Evolution , 2004 .

[61]  Michel Cabassud,et al.  Design of a neural controller by inverse modelling , 1995 .

[62]  G. K. Raju,et al.  Active learning from process data , 1998 .

[63]  Darrell Whitley,et al.  Optimizing small neural networks using a distributed genetic algorithm , 1990 .

[64]  Risto Miikkulainen,et al.  Hierarchical evolution of neural networks , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[65]  Urmila M. Diwekar,et al.  NEW ERA IN BATCH DISTILLATION: COMPUTER AIDED ANALYSIS, OPTIMAL DESIGN AND CONTROL , 2001 .

[66]  Sigurd Skogestad,et al.  Plantwide control: the search for the self-optimizing control structure , 2000 .

[67]  X. Yao Evolving Artificial Neural Networks , 1999 .

[68]  Zhang Hao-ran Neural Network Based Nonlinear Model Predictive Control , 2003 .

[69]  Hector Budman,et al.  Adaptive neural network structures for non-linear process estimation and control , 1999 .

[70]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[71]  Thomas F. Edgar,et al.  Process Dynamics and Control , 1989 .

[72]  Michael A. Henson,et al.  Nonlinear model predictive control: current status and future directions , 1998 .

[73]  Hassan K. Khalil,et al.  Adaptive control of a class of nonlinear discrete-time systems using neural networks , 1995, IEEE Trans. Autom. Control..

[74]  J. Penttinen,et al.  Design and Experimental Evaluation of a Multivariable Grinding Circuit Control System , 1983 .

[75]  Ahmet Palazoglu,et al.  Studies on the analysis of nonlinear processes via functional expansions—III: controller design , 1998 .

[76]  Andreas Zell,et al.  Memetic Algorithms For Combinatorial Optimization Problems In The Calibration Of Modern Combustion Engines , 2002, GECCO.

[77]  Kaddour Najim,et al.  Adaptive predictive control of a grinding circuit , 1994 .

[78]  JayHyung Lee,et al.  Nonlinear model predictive control of the Tennessee Eastman challenge process , 1995 .

[79]  Sigurd Skogestad,et al.  Self-optimizing control of a large-scale plant: The Tennessee Eastman process , 2001 .

[80]  N. V. Bhat,et al.  Use of neural nets for dynamic modeling and control of chemical process systems , 1990 .

[81]  Peter J. Gawthrop,et al.  Neural networks for control systems - A survey , 1992, Autom..

[82]  M. A. Henson,et al.  Compactly supported radial basis functions for adaptive process control , 1997 .

[83]  Kumpati S. Narendra,et al.  Adaptive control using multiple models , 1997, IEEE Trans. Autom. Control..

[84]  Judea Pearl,et al.  The New Challenge: From a Century of Statistics to an Age of Causation , 1997 .

[85]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[86]  Eric R. Weeks,et al.  Evolving artificial neural networks to control chaotic systems , 1997 .

[87]  John W. Eaton,et al.  Model Predictive Control of Chemical Processes , 1991, 1991 American Control Conference.

[88]  JayHyung Lee,et al.  Nonlinear modeling and state estimation for the Tennessee Eastman challenge process , 1995 .

[89]  David D. Brengel,et al.  NONLINEAR ANALYSIS IN PROCESS DESIGN , 1991 .

[90]  Reza Ghanadan Adaptive PID Control of Nonlinear Systems , 1990 .

[91]  David D. Brengel,et al.  Nonlinear analysis in process design. Why overdesign to avoid complex nonlinearities , 1990 .

[92]  李幼升,et al.  Ph , 1989 .

[93]  Yaman Arkun,et al.  Study of the control-relevant properties of backpropagation neural network models of nonlinear dynamical systems , 1992 .

[94]  John J. Grefenstette,et al.  Learning sequential decision rules using simulation models and competition , 2004, Machine Learning.

[95]  Mohd Azlan Hussain,et al.  Implementation of an Inverse-Model-Based Control Strategy Using Neural Networks on a Partially Simulated Exothermic Reactor , 2000 .

[96]  Raj K. Rajamani,et al.  Optimal control of a ball mill grinding circuit—II. Feedback and optimal control , 1991 .

[97]  Chonghun Han,et al.  Intelligent systems in process engineering : A review , 1996 .

[98]  Manfred Morari,et al.  Studies in the synthesis of control structures for chemical processes: Part I: Formulation of the problem. Process decomposition and the classification of the control tasks. Analysis of the optimizing control structures , 1980 .

[99]  Alan S. Perelson,et al.  Searching for Diverse, Cooperative Populations with Genetic Algorithms , 1993, Evolutionary Computation.

[100]  Cheol Hoon Park,et al.  A neural linearizing control scheme for nonlinear chemical processes , 1994 .

[102]  Daniel Hodouin,et al.  Neural network based control of mineral grinding plants , 1993 .

[103]  Mohamed Azlan Hussain,et al.  Review of the applications of neural networks in chemical process control - simulation and online implementation , 1999, Artif. Intell. Eng..

[104]  A. E. Oblad,et al.  Cost reduction in grinding plants through process optimization and control , 1996 .

[105]  Doraiswami Ramkrishna,et al.  Theoretical investigations of dynamic behavior of isothermal continuous stirred tank biological reactors , 1982 .

[106]  S. Chiu Developing commercial applications of intelligent control , 1997 .

[107]  Raj K. Rajamani,et al.  Optimal control of a ball mill grinding circuit—I. Grinding circuit modeling and dynamic simulation , 1991 .

[108]  K. S. Narendra,et al.  Neural networks for control theory and practice , 1996, Proc. IEEE.

[109]  Lester Kershenbaum,et al.  Experimental Testing of Advanced Algorithms for Process Control: When is it Worth the Effort? , 2000 .

[110]  Tomas Hrycej,et al.  Neurocontrol: Towards an Industrial Control Methodology , 1997 .

[111]  Masaru Noda,et al.  On-line optimization system of pilot scale multi-effect batch distillation system , 2000 .

[112]  Liang-Heng Chen,et al.  Bifurcation characteristics of nonlinear systems under conventional pid control , 1984 .

[113]  R. Vautard,et al.  Singular-spectrum analysis: a toolkit for short, noisy chaotic signals , 1992 .

[114]  Douglas J. Cooper,et al.  Neural network based adaptive control via temporal pattern recognition , 1992 .

[116]  T. McAvoy Synthesis of Plantwide Control Systems Using Optimization , 1999 .

[117]  Jeffrey L. Elman,et al.  Learning and Evolution in Neural Networks , 1994, Adapt. Behav..

[118]  Jay H. Lee,et al.  Model predictive control: past, present and future , 1999 .

[119]  Zbigniew Michalewicz,et al.  Evolutionary Computation 1 , 2018 .

[120]  B. Widrow,et al.  Neural networks for self-learning control systems , 1990, IEEE Control Systems Magazine.

[121]  B. Bequette Nonlinear control of chemical processes: a review , 1991 .

[122]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[123]  J. D. Perkins,et al.  A case study in simultaneous design and control using rigorous, mixed-integer dynamic optimization models , 2002 .

[124]  Thomas J. Mc Avoy,et al.  Use of Neural Nets For Dynamic Modeling and Control of Chemical Process Systems , 1989, 1989 American Control Conference.

[125]  George Stephanopoulos,et al.  Perspectives on the synthesis of plant-wide control structures , 2000 .

[126]  Christos Georgakis,et al.  Plant-wide control of the Tennessee Eastman problem , 1995 .

[127]  Jay H. Lee,et al.  Subspace identification based inferential control of a continuous pulp digester , 1997 .

[128]  Jing-Jing Fang,et al.  Part II: implementations , 2005 .

[129]  Yaman Arkun,et al.  Control of the Tennessee Eastman process using input-output models , 1997 .

[130]  E. F. Vogel,et al.  A plant-wide industrial process control problem , 1993 .

[131]  D. Goldberg,et al.  Natural niching for evolving cooperative classifiers , 1996 .

[132]  Chris Aldrich,et al.  Intelligent process control utilising symbiotic memetic neuro-evolution , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[133]  D. Kugiumtzis State space reconstruction parameters in the analysis of chaotic time series—the role of the time window length , 1996, comp-gas/9602002.

[134]  Christodoulos A. Floudas,et al.  Analyzing the interaction of design and control—1. A multiobjective framework and application to binary distillation synthesis , 1994 .

[135]  Peter J. Angeline,et al.  Tracking Extrema in Dynamic Environments , 1997, Evolutionary Programming.

[136]  Sigurd Skogestad,et al.  Self-optimizing control: the missing link between steady-state optimization and control , 2000 .

[137]  Eugene J. H. Kerckhoffs,et al.  Neural networks in process control: model-based and reinforcement trained controllers , 1997 .

[138]  Daniel Hodouin,et al.  A survey of grinding circuit control methods: from decentralized PID controllers to multivariable predictive controllers , 2000 .

[139]  Derrick H. Nguyen,et al.  Neural networks for self-learning control systems , 1990 .

[140]  S. Omatu,et al.  A neural network controller for a temperature control system , 1992 .

[141]  David D. Brengel,et al.  Coordinated design and control optimization of nonlinear processes , 1992 .

[142]  André Desbiens,et al.  Distributed control at the Kidd Creek grinding plant. Part II: Implementation , 1997 .

[143]  A. J. Morris,et al.  Artificial neural networks in process engineering , 1991 .

[144]  Marco Saerens,et al.  Neural controller based on back-propagation algorithm , 1991 .

[145]  Chuen-Tsai Sun,et al.  Functional equivalence between radial basis function networks and fuzzy inference systems , 1993, IEEE Trans. Neural Networks.

[146]  M. Agarwal A systematic classification of neural-network-based control , 1997 .

[147]  Paisan Kuttisupakorn,et al.  Studies on the use of neural networks in nonlinear control strategies , 2001 .

[148]  Stephen Piche,et al.  Nonlinear model predictive control using neural networks , 2000 .

[149]  G. I. Gossman,et al.  The Application of a Microprocessor-Based Multivariable Controller to a Gold Milling Circuit , 1983 .

[150]  Rong Chen,et al.  An optimal control based approach to designing plantwide control system architectures , 2001 .

[151]  M. C. Palancar,et al.  pH-Control System Based on Artificial Neural Networks , 1998 .

[152]  Phillip D. Schnelle,et al.  Model predictive control of an industrial packed bed reactor using neural networks , 1995 .

[153]  M. J. D. Powell,et al.  An efficient method for finding the minimum of a function of several variables without calculating derivatives , 1964, Comput. J..

[154]  Lyle H. Ungar,et al.  Neural network forecasting of short, noisy time series , 1992 .

[155]  Risto Miikkulainen,et al.  Culling and Teaching in Neuro-Evolution , 1997, ICGA.

[156]  L. Darrell Whitley,et al.  Genetic algorithms and neural networks: optimizing connections and connectivity , 1990, Parallel Comput..

[157]  J. A. Herbst,et al.  Mill Speed as a Manipulated Variable for Ball Mill Grinding Control , 1983 .

[158]  John J. Grefenstette,et al.  Evolutionary Algorithms for Reinforcement Learning , 1999, J. Artif. Intell. Res..

[159]  David E. Goldberg,et al.  Implicit Niching in a Learning Classifier System: Nature's Way , 1994, Evolutionary Computation.

[160]  R. Hecht-Nielsen,et al.  Neurocomputing: picking the human brain , 1988, IEEE Spectrum.

[161]  Sirkka-Liisa Jämsä-Jounela,et al.  State of the art and challenges in mineral processing control , 2000 .

[162]  B. Ydstie Forecasting and control using adaptive connectionist networks , 1990 .

[163]  George Stephanopoulos,et al.  Synthesis of control systems for chemical plants A challenge for creativity , 1983 .

[164]  John D. Perkins,et al.  Integrated design of responsive chemical manufacturing facilities , 1997 .

[165]  D. C. Psichogios,et al.  Direct and indirect model based control using artificial neural networks , 1991 .

[166]  Lyle H. Ungar,et al.  A bioreactor benchmark for adaptive network-based process control , 1990 .

[167]  J. A. Bandoni,et al.  Integrated flexibility and controllability analysis in design of chemical processes , 1997 .

[168]  G. P. Distefano,et al.  Mathematical modeling and numerical integration of multicomponent batch distillation equations , 1968 .

[169]  Derek Robinson,et al.  An Optimal Control Based Approach to Designing Plantwide Control System Architectures , 2000 .

[170]  Tirthankar Raychaudhuri,et al.  From conventional control to autonomous intelligent methods , 1996 .