Online clustering of streaming trajectories

With the increasing availability of modern mobile devices and location acquisition technologies, massive trajectory data of moving objects are collected continuously in a streaming manner. Clustering streaming trajectories facilitates finding the representative paths or common moving trends shared by different objects in real time. Although data stream clustering has been studied extensively in the past decade, little effort has been devoted to dealing with streaming trajectories. The main challenge lies in the strict space and time complexities of processing the continuously arriving trajectory data, combined with the difficulty of concept drift. To address this issue, we present two novel synopsis structures to extract the clustering characteristics of trajectories, and develop an incremental algorithm for the online clustering of streaming trajectories (called OCluST). It contains a micro-clustering component to cluster and summarize the most recent sets of trajectory line segments at each time instant, and a macro-clustering component to build large macro-clusters based on micro-clusters over a specified time horizon. Finally, we conduct extensive experiments on four real data sets to evaluate the effectiveness and efficiency of OCluST, and compare it with other congeneric algorithms. Experimental results show that OCluST can achieve superior performance in clustering streaming trajectories.

[1]  Weiwei Sun,et al.  GLUE: a Parameter-Tuning-Free Map Updating System , 2015, CIKM.

[2]  Elke A. Rundensteiner,et al.  SCUBA: Scalable Cluster-Based Algorithm for Evaluating Continuous Spatio-temporal Queries on Moving Objects , 2006, EDBT.

[3]  Christian S. Jensen,et al.  Discovery of convoys in trajectory databases , 2008, Proc. VLDB Endow..

[4]  Beng Chin Ooi,et al.  Continuous Clustering of Moving Objects , 2007, IEEE Transactions on Knowledge and Data Engineering.

[5]  Seung-won Hwang,et al.  NNCluster: An Efficient Clustering Algorithm for Road Network Trajectories , 2010, DASFAA.

[6]  Aoying Zhou,et al.  TSCluWin: Trajectory Stream Clustering over Sliding Window , 2016, DASFAA.

[7]  Nicholas Jing Yuan,et al.  On discovery of gathering patterns from trajectories , 2013, 2013 IEEE 29th International Conference on Data Engineering (ICDE).

[8]  Daqing Zhang,et al.  Urban Traffic Modelling and Prediction Using Large Scale Taxi GPS Traces , 2012, Pervasive.

[9]  Elio Masciari,et al.  Dealing with trajectory streams by clustering and mathematical transforms , 2013, Journal of Intelligent Information Systems.

[10]  Jae-Gil Lee,et al.  Incremental Clustering for Trajectories , 2010, DASFAA.

[11]  Lei Chen,et al.  On The Marriage of Lp-norms and Edit Distance , 2004, VLDB.

[12]  Verena Kantere,et al.  On-line discovery of hot motion paths , 2008, EDBT '08.

[13]  Frank Dürr,et al.  Efficient real-time trajectory tracking , 2011, The VLDB Journal.

[14]  Stephen Shaoyi Liao,et al.  Aggregating and Sampling Methods for Processing GPS Data Streams for Traffic State Estimation , 2013, IEEE Transactions on Intelligent Transportation Systems.

[15]  Xiaoyi Duan,et al.  Real-Time Personalized Taxi-Sharing , 2016, DASFAA.

[16]  Jiong Yang,et al.  STING: A Statistical Information Grid Approach to Spatial Data Mining , 1997, VLDB.

[17]  Tian Zhang,et al.  BIRCH: an efficient data clustering method for very large databases , 1996, SIGMOD '96.

[18]  Zhu Wang,et al.  ScenicPlanner: planning scenic travel routes leveraging heterogeneous user-generated digital footprints , 2017, Frontiers of Computer Science.

[19]  Jing Yuan,et al.  On Discovery of Traveling Companions from Streaming Trajectories , 2012, 2012 IEEE 28th International Conference on Data Engineering.

[20]  Christian S. Jensen,et al.  Effective Online Group Discovery in Trajectory Databases , 2013, IEEE Transactions on Knowledge and Data Engineering.

[21]  Xiaohui Huang,et al.  A scalable and fast OPTICS for clustering trajectory big data , 2015, Cluster Computing.

[22]  Dimitrios Gunopulos,et al.  Discovering similar multidimensional trajectories , 2002, Proceedings 18th International Conference on Data Engineering.

[23]  Aoying Zhou,et al.  Efficient clustering of uncertain data streams , 2013, Knowledge and Information Systems.

[24]  Rajeev Motwani,et al.  Maintaining variance and k-medians over data stream windows , 2003, PODS.

[25]  Yifan Li,et al.  Clustering moving objects , 2004, KDD.

[26]  Padhraic Smyth,et al.  Trajectory clustering with mixtures of regression models , 1999, KDD '99.

[27]  Lei Chen,et al.  Robust and fast similarity search for moving object trajectories , 2005, SIGMOD '05.

[28]  Aoying Zhou,et al.  Popular Route Planning with Travel Cost Estimation , 2016, DASFAA.

[29]  Sang-Wook Kim,et al.  Trajectory Clustering in Road Network Environment , 2009 .

[30]  Aoying Zhou,et al.  Tracking clusters in evolving data streams over sliding windows , 2008, Knowledge and Information Systems.

[31]  Ling Liu,et al.  Road-Network Aware Trajectory Clustering: Integrating Locality, Flow, and Density , 2015, IEEE Transactions on Mobile Computing.

[32]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[33]  Philip S. Yu,et al.  A Framework for Clustering Uncertain Data Streams , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[34]  Bernhard Mitschang,et al.  Usability analysis of compression algorithms for position data streams , 2010, GIS '10.

[35]  Eamonn J. Keogh,et al.  Iterative Deepening Dynamic Time Warping for Time Series , 2002, SDM.

[36]  Jae-Gil Lee,et al.  Trajectory clustering: a partition-and-group framework , 2007, SIGMOD '07.

[37]  Philip S. Yu,et al.  A Framework for Clustering Evolving Data Streams , 2003, VLDB.

[38]  Piotr Indyk,et al.  Maintaining Stream Statistics over Sliding Windows , 2002, SIAM J. Comput..

[39]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[40]  Huan Wang,et al.  Online clustering for trajectory data stream of moving objects , 2013, Comput. Sci. Inf. Syst..

[41]  Cyrus Shahabi,et al.  Crowd sensing of traffic anomalies based on human mobility and social media , 2013, SIGSPATIAL/GIS.