An Interior Proximal Method for a Class of Quasimonotone Variational Inequalities

The Bregman-function-based Proximal Point Algorithm for variational inequalities is studied. Classical papers on this method deal with the assumption that the operator of the variational inequality is monotone. Motivated by the fact that this assumption can be considered to be restrictive, e.g., in the discussion of Nash equilibrium problems, the main objective of the present paper is to provide a convergence analysis only using a weaker assumption called quasimonotonicity. To the best of our knowledge, this is the first algorithm established for this general and frequently studied class of problems.

[1]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[2]  Didier Aussel,et al.  Subdifferential characterization of quasiconvexity and convexity , 1994 .

[3]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[4]  Jonathan Eckstein,et al.  Approximate iterations in Bregman-function-based proximal algorithms , 1998, Math. Program..

[5]  Daniel Ralph,et al.  A geometrical insight on pseudoconvexity and pseudomonotonicity , 2010, Math. Program..

[6]  Heinz H. Bauschke,et al.  Legendre functions and the method of random Bregman projections , 1997 .

[7]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[8]  Nils Langenberg Pseudomonotone operators and the Bregman Proximal Point Algorithm , 2010, J. Glob. Optim..

[9]  Alexander Kaplan,et al.  Interior Proximal Method for Variational Inequalities: Case of Nonparamonotone Operators , 2001, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[10]  Joydeep Dutta,et al.  Inexact Proximal Point Methods for Variational Inequality Problems , 2010, SIAM J. Optim..

[11]  Didier Aussel,et al.  On Quasimonotone Variational Inequalities , 2004 .

[12]  Jonathan Eckstein,et al.  Nonlinear Proximal Point Algorithms Using Bregman Functions, with Applications to Convex Programming , 1993, Math. Oper. Res..

[13]  S. Karamardian Complementarity problems over cones with monotone and pseudomonotone maps , 1976 .

[14]  A. Kaplan,et al.  Note on the paper: Interior proximal method for variational inequalities on non-polyhedral sets , 2010 .

[15]  I. V. Konnov,et al.  On Quasimonotone Variational Inequalities , 1998 .

[16]  Alfredo N. Iusem,et al.  A Generalized Proximal Point Algorithm for the Variational Inequality Problem in a Hilbert Space , 1998, SIAM J. Optim..

[17]  Y. Censor,et al.  Proximal Minimization Algorithm with D-Functions 1'2 , 1992 .

[18]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.

[19]  S. Karamardian,et al.  Seven kinds of monotone maps , 1990 .

[20]  Alfredo N. Iusem,et al.  An interior point method with Bregman functions for the variational inequality problem with paramonotone operators , 1998, Math. Program..

[21]  Jacques A. Ferland,et al.  Criteria for differentiable generalized monotone maps , 1996, Math. Program..

[22]  Benar Fux Svaiter,et al.  An Inexact Hybrid Generalized Proximal Point Algorithm and Some New Results on the Theory of Bregman Functions , 2000, Math. Oper. Res..

[23]  Rainer Tichatschke,et al.  Interior proximal methods for quasiconvex optimization , 2012, J. Glob. Optim..

[24]  Deren Han A New Hybrid Generalized Proximal Point Algorithm for Variational Inequality Problems , 2003, J. Glob. Optim..

[25]  Patrice Marcotte,et al.  Conditions ensuring the applicability of cutting-plane methods for solving variational inequalities , 2000, Math. Program..

[26]  Siegfried Schaible,et al.  Quasimonotone variational inequalities in Banach spaces , 1996 .

[27]  Marc Teboulle,et al.  Convergence Analysis of a Proximal-Like Minimization Algorithm Using Bregman Functions , 1993, SIAM J. Optim..

[28]  Nils Langenberg,et al.  Convergence analysis of an extended auxiliary problem principle with various stopping criteria , 2011, Optim. Methods Softw..

[29]  A. Kaplan,et al.  On inexact generalized proximal methods with a weakened error tolerance criterion , 2004 .

[30]  Siegfried Schaible,et al.  Handbook of Generalized Convexity and Generalized Monotonicity , 2005 .

[31]  Siegfried Schaible,et al.  Characterizations of generalized monotone maps , 1993 .