An Interior Proximal Method for a Class of Quasimonotone Variational Inequalities
暂无分享,去创建一个
[1] R. Tyrrell Rockafellar,et al. Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.
[2] Didier Aussel,et al. Subdifferential characterization of quasiconvexity and convexity , 1994 .
[3] L. Bregman. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .
[4] Jonathan Eckstein,et al. Approximate iterations in Bregman-function-based proximal algorithms , 1998, Math. Program..
[5] Daniel Ralph,et al. A geometrical insight on pseudoconvexity and pseudomonotonicity , 2010, Math. Program..
[6] Heinz H. Bauschke,et al. Legendre functions and the method of random Bregman projections , 1997 .
[7] F. Facchinei,et al. Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .
[8] Nils Langenberg. Pseudomonotone operators and the Bregman Proximal Point Algorithm , 2010, J. Glob. Optim..
[9] Alexander Kaplan,et al. Interior Proximal Method for Variational Inequalities: Case of Nonparamonotone Operators , 2001, Universität Trier, Mathematik/Informatik, Forschungsbericht.
[10] Joydeep Dutta,et al. Inexact Proximal Point Methods for Variational Inequality Problems , 2010, SIAM J. Optim..
[11] Didier Aussel,et al. On Quasimonotone Variational Inequalities , 2004 .
[12] Jonathan Eckstein,et al. Nonlinear Proximal Point Algorithms Using Bregman Functions, with Applications to Convex Programming , 1993, Math. Oper. Res..
[13] S. Karamardian. Complementarity problems over cones with monotone and pseudomonotone maps , 1976 .
[14] A. Kaplan,et al. Note on the paper: Interior proximal method for variational inequalities on non-polyhedral sets , 2010 .
[15] I. V. Konnov,et al. On Quasimonotone Variational Inequalities , 1998 .
[16] Alfredo N. Iusem,et al. A Generalized Proximal Point Algorithm for the Variational Inequality Problem in a Hilbert Space , 1998, SIAM J. Optim..
[17] Y. Censor,et al. Proximal Minimization Algorithm with D-Functions 1'2 , 1992 .
[18] O. Nelles,et al. An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.
[19] S. Karamardian,et al. Seven kinds of monotone maps , 1990 .
[20] Alfredo N. Iusem,et al. An interior point method with Bregman functions for the variational inequality problem with paramonotone operators , 1998, Math. Program..
[21] Jacques A. Ferland,et al. Criteria for differentiable generalized monotone maps , 1996, Math. Program..
[22] Benar Fux Svaiter,et al. An Inexact Hybrid Generalized Proximal Point Algorithm and Some New Results on the Theory of Bregman Functions , 2000, Math. Oper. Res..
[23] Rainer Tichatschke,et al. Interior proximal methods for quasiconvex optimization , 2012, J. Glob. Optim..
[24] Deren Han. A New Hybrid Generalized Proximal Point Algorithm for Variational Inequality Problems , 2003, J. Glob. Optim..
[25] Patrice Marcotte,et al. Conditions ensuring the applicability of cutting-plane methods for solving variational inequalities , 2000, Math. Program..
[26] Siegfried Schaible,et al. Quasimonotone variational inequalities in Banach spaces , 1996 .
[27] Marc Teboulle,et al. Convergence Analysis of a Proximal-Like Minimization Algorithm Using Bregman Functions , 1993, SIAM J. Optim..
[28] Nils Langenberg,et al. Convergence analysis of an extended auxiliary problem principle with various stopping criteria , 2011, Optim. Methods Softw..
[29] A. Kaplan,et al. On inexact generalized proximal methods with a weakened error tolerance criterion , 2004 .
[30] Siegfried Schaible,et al. Handbook of Generalized Convexity and Generalized Monotonicity , 2005 .
[31] Siegfried Schaible,et al. Characterizations of generalized monotone maps , 1993 .