Methods for Scaling to Doubly Stochastic Form

[1]  I. Olkin,et al.  Scaling of matrices to achieve specified row and column sums , 1968 .

[2]  W. Deming,et al.  On a Least Squares Adjustment of a Sampled Frequency Table When the Expected Marginal Totals are Known , 1940 .

[3]  D. Djoković,et al.  Note on nonnegative matrices , 1970 .

[4]  R. Brualdi,et al.  The diagonal equivalence of a nonnegative matrix to a stochastic matrix , 1966 .

[5]  Richard Sinkhorn,et al.  Problems involving diagonal products in nonnegative matrices , 1969 .

[6]  C. Reinsch,et al.  Balancing a matrix for calculation of eigenvalues and eigenvectors , 1969 .

[7]  Richard Sinkhorn A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices , 1964 .

[8]  Josef Stoer,et al.  Transformations by diagonal matrices in a normed space , 1962 .

[9]  M. V. Menon REDUCTION OF A MATRIX WITH POSITIVE ELEMENTS TO A DOUBLY STOCHASTIC MATRIX , 1967 .

[10]  S. Fienberg An Iterative Procedure for Estimation in Contingency Tables , 1970 .

[11]  Richard Sinkhorn,et al.  Concerning nonnegative matrices and doubly stochastic matrices , 1967 .

[12]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[13]  Michael Bacharach,et al.  Biproportional matrices & input-output change , 1970 .

[14]  Richard Sinkhorn Diagonal equivalence to matrices with prescribed row and column sums. II , 1967 .

[15]  Richard Sinkhorn,et al.  A Relationship between Arbitrary Positive Matrices and Stochastic Matrices , 1966, Canadian Journal of Mathematics.

[16]  Richard Bellman,et al.  Introduction to Matrix Analysis , 1972 .

[17]  S. Kullback,et al.  Contingency tables with given marginals. , 1968, Biometrika.