Reliability-based design of MEMS mechanisms by topology optimization

This paper presents a methodology for the design of micro-electro-mechanical systems (MEMS) by topology optimization accounting for stochastic loading and boundary conditions as well as material properties. This methodology combines recent advances in material-based topology optimization for compliant mechanisms undergoing large displacements and design optimization under uncertainties using first order reliability analysis methods. The performance measure approach is applied to the formulation of the optimization problem. The structural response is predicted by a co-rotational finite element formulation and the design and imperfection sensitivities are evaluated by an adjoint method. The methodology is illustrated by the topology optimization of a compliant mechanism. The results show the importance of accounting for the stochastic nature of the micro-system in the topology optimization process.

[1]  Noboru Kikuchi,et al.  Optimal shape and location of piezoelectric materials for topology optimization of flextensional actuators , 2001 .

[2]  Mary Frecker,et al.  Topological synthesis of compliant mechanisms using multi-criteria optimization , 1997 .

[3]  Ole Sigmund,et al.  Design of multiphysics actuators using topology optimization - Part I: One-material structures , 2001 .

[4]  A. Michell LVIII. The limits of economy of material in frame-structures , 1904 .

[5]  Gerald Wempner,et al.  Finite elements, finite rotations and small strains of flexible shells , 1969 .

[6]  Y. Murotsu,et al.  Optimum shape design of truss structures based on reliability , 1990 .

[7]  M. Zhou,et al.  Generalized shape optimization without homogenization , 1992 .

[8]  Tim Bedford,et al.  Safety and Reliability , 2003 .

[9]  Charbel Farhat,et al.  Conceptual Layout of Aeroelastic Wing Structures by Topology Optimization , 2002 .

[10]  K. Bathe Finite Element Procedures , 1995 .

[11]  G. K. Ananthasuresh,et al.  On an optimal property of compliant topologies , 2000 .

[12]  Gerald Stöckl Topology Optimization of Trusses under Stochastic Uncertainty , 2001 .

[13]  B. J. Hsieh,et al.  Non-Linear Transient Finite Element Analysis with Convected Co--ordinates , 1973 .

[14]  Zheng-Dong Ma,et al.  Topological Optimization Technique for Free Vibration Problems , 1995 .

[15]  Jian Su,et al.  Automatic Differentiation in Robust Optimization , 1997 .

[16]  Wei Chen,et al.  Exploration of the effectiveness of physical programming in robust design , 2000 .

[17]  C. Rankin,et al.  Finite rotation analysis and consistent linearization using projectors , 1991 .

[18]  K. Schittkowski NLPQL: A fortran subroutine solving constrained nonlinear programming problems , 1986 .

[19]  N. Olhoff,et al.  Reliability-based topology optimization , 2004 .

[20]  M. Zhou,et al.  Checkerboard and minimum member size control in topology optimization , 2001 .

[21]  Ichiro Hagiwara,et al.  Static and vibrational shape and topology optimization using homogenization and mathematical programming , 1993 .

[22]  C. Sundararajan,et al.  Probabilistic Structural Mechanics Handbook , 1995 .

[23]  K. Bathe,et al.  ON THE AUTOMATIC SOLUTION OF NONLINEAR FINITE ELEMENT EQUATIONS , 1983 .

[24]  Noboru Kikuchi,et al.  TOPOLOGY OPTIMIZATION OF COMPLIANT MECHANISMS USING THE HOMOGENIZATION METHOD , 1998 .

[25]  Yoshisada Murotsu,et al.  Optimal Shape of Truss Structure Based on Reliability , 1996 .

[26]  Hideomi Ohtsubo,et al.  Reliability-Based Structural Optimization , 1991 .

[27]  Martin P. Bendsøe,et al.  Topology Optimization of Continuum Structures with Stress Constraints , 1997 .

[28]  Ole Sigmund,et al.  Topology synthesis of large‐displacement compliant mechanisms , 2001 .

[29]  John Dalsgaard Sørensen,et al.  Reliability-Based Optimization in Structural Engineering , 1994 .

[30]  C. S. Jog,et al.  A new approach to variable-topology shape design using a constraint on perimeter , 1996 .

[31]  Daniel A. Tortorelli,et al.  Topology optimization of geometrically nonlinear structures and compliant mechanisms , 1998 .

[32]  Young-Soon Yang,et al.  A comparative study on reliability-index and target-performance-based probabilistic structural design optimization , 2002 .

[33]  N. Kikuchi,et al.  Optimal design of piezoelectric microstructures , 1997 .

[34]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[35]  George I. N. Rozvany,et al.  Structural Design via Optimality Criteria , 1989 .

[36]  A. Kiureghian,et al.  Optimization algorithms for structural reliability , 1991 .

[37]  Dan M. Frangopol,et al.  Reliability-based optimum design of reinforced concrete girders , 1996 .

[38]  G. K. Ananthasuresh,et al.  Topology Synthesis of Compliant Mechanisms for Nonlinear Force-Deflection and Curved Path Specifications , 2001 .

[39]  J. Petersson,et al.  Slope constrained topology optimization , 1998 .

[40]  Kyung K. Choi,et al.  A NEW STUDY ON RELIABILITY-BASED DESIGN OPTIMIZATION , 1999 .

[41]  K. Breuer,et al.  MEMS, microengineering and aerospace systems , 1999 .

[42]  Ole Sigmund,et al.  On the Design of Compliant Mechanisms Using Topology Optimization , 1997 .

[43]  J. Petersson,et al.  Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima , 1998 .

[44]  Hojjat Adeli,et al.  Advances in Design Optimization , 1994 .

[45]  A. Ismail-Yahaya,et al.  Multiobjective robust design using physical programming , 2002 .

[46]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[47]  Ole Sigmund,et al.  On the design of 1–3 piezocomposites using topology optimization , 1998 .

[48]  G. Buttazzo,et al.  An optimal design problem with perimeter penalization , 1993 .