Anomaly detection using Deep Autoencoders for the assessment of the quality of the data acquired by the CMS experiment
暂无分享,去创建一个
Gianluca Cerminara | Adrian Alan Pol | Maurizio Pierini | Giovanni Franzoni | Jean-Roch Vlimant | Federico De Guio | Virginia Azzolini | M. Pierini | J. Vlimant | V. Azzolini | F. Guio | G. Cerminara | G. Franzoni | F. De Guio | A. Pol | Filip Siroky | Filip Siroký | A. A. Pol
[1] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[2] Geoffrey E. Hinton,et al. Deep Learning , 2015, Nature.
[3] Jian Sun,et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).
[4] Valdas Rapsevicius. CMS Run Registry: Data Certification Bookkeeping and Publication System , 2011 .
[5] Marc'Aurelio Ranzato,et al. Efficient Learning of Sparse Representations with an Energy-Based Model , 2006, NIPS.
[6] Naftali Tishby,et al. Deep learning and the information bottleneck principle , 2015, 2015 IEEE Information Theory Workshop (ITW).
[7] Naftali Tishby,et al. Opening the Black Box of Deep Neural Networks via Information , 2017, ArXiv.