Assessment of Model-Based Knock Prediction Methods for Spark-Ignition Engines

[1]  Yu Chen,et al.  A study on the influence of burning rate on engine knock from empirical data and simulation , 2015 .

[2]  Bengt Sundén,et al.  Knock Modeling: an Integrated Tool for Detailed Chemistry and Engine Cycle Simulation , 2003 .

[3]  S. Sazhin,et al.  The shell autoignition model: a new mathematical formulation , 1999 .

[4]  John B. Heywood,et al.  Internal combustion engine fundamentals , 1988 .

[5]  Rolf D. Reitz,et al.  Modeling Knock in Spark-Ignition Engines Using a G-equation Combustion Model Incorporating Detailed Chemical Kinetics , 2007 .

[6]  Lars Eriksson,et al.  Calculation of Optimal Heat Release Rates under Constrained Conditions , 2016 .

[7]  Ulrich Spicher,et al.  Application of Different Cylinder Pressure Based Knock Detection Methods in Spark Ignition Engines , 2002 .

[8]  Nicholas P. Cernansky,et al.  A Global Reaction Model for the HCCI Combustion Process , 2004 .

[9]  C. Law,et al.  A predictive Livengood–Wu correlation for two-stage ignition , 2016 .

[10]  Emiliano Pipitone,et al.  A Refined Model for Knock Onset Prediction in Spark Ignition Engines Fueled With Mixtures of Gasoline and Propane , 2015 .

[11]  L. Kirsch,et al.  The autoignition of hydrocarbon fuels at high temperatures and pressures—Fitting of a mathematical model , 1977 .

[12]  J. C. Livengood,et al.  Correlation of autoignition phenomena in internal combustion engines and rapid compression machines , 1955 .

[13]  K. C. Midkiff,et al.  Ignition in Pilot-Ignited Natural Gas Low Temperature Combustion: Multi-Zone Modeling and Experimental Results , 2009 .

[14]  Song-Charng Kong,et al.  Modeling Autoignition and Engine Knock Under Spark Ignition Conditions , 2003 .

[15]  Richard A. Yetter,et al.  Autoignition of H2/CO at elevated pressures in a rapid compression machine , 2006 .

[16]  Morgan Heikal,et al.  The Shell autoignition model: applications to gasoline and diesel fuels , 1999 .

[17]  Robert G. Prucka,et al.  An Experimental Characterization of a High Degree of Freedom Spark-Ignition Engine to Achieve Optimized Ignition Timing Control. , 2008 .

[18]  Robert Prucka,et al.  Assessment of Cooled Low Pressure EGR in a Turbocharged Direct Injection Gasoline Engine , 2015 .

[19]  J. A. Cole,et al.  Chemical aspects of the autoignition of hydrocarbonair mixtures , 1985 .

[20]  Emmanuel P Kasseris Knock limits in spark ignited direct injected engines using gasoline/ethanol blends , 2011 .

[21]  John B. Heywood,et al.  Comparative Analysis of Automotive Powertrain Choices for the Next 25 Years , 2007 .

[22]  N. Fraser,et al.  Challenges for Increased Efficiency through Gasoline Engine Downsizing , 2009 .

[23]  Magín Lapuerta,et al.  Autoignition prediction capability of the Livengood–Wu correlation applied to fuels of commercial interest , 2014 .

[24]  A. Prothero,et al.  A mathematical model for hydrocarbon autoignition at high pressures , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[25]  Robert R. Raine,et al.  Engine Knock in an SI Engine with Hydrogen Supplementation under Stoichiometric and Lean Conditions , 2014 .

[26]  Andrew Smallbone,et al.  The Influence of Simulated Residual and NO Concentrations on Knock Onset for PRFs and Gasolines , 2004 .

[27]  Qilun Zhu,et al.  A Real-Time Model for Spark Ignition Engine Combustion Phasing Prediction , 2016 .

[28]  Rolf D. Reitz,et al.  Spark Ignition Engine Combustion Modeling Using a Level Set Method with Detailed Chemistry , 2006 .

[29]  C. P. Quinn,et al.  Inhibition of autoignition at high pressure , 1973 .

[30]  Charles K. Westbrook,et al.  Comparison of engine knock predictions using a fully-detailed and a reduced chemical kinetic mechanism , 1989 .

[31]  A. Douaud,et al.  Four-Octane-Number Method for Predicting the Anti-Knock Behavior of Fuels and Engines , 1978 .

[32]  Shinrak Park,et al.  Validation of Turbulent Combustion and Knocking Simulation in Spark-Ignition Engines Using Reduced Chemical Kinetics , 2015 .