An adaptive radial basis function method using weighted improvement

This paper introduces an adaptive Radial Basis Function (RBF) method using weighted improvement for the global optimization of black-box problems subject to box constraints. The proposed method applies rank-one update to efficiently build RBF models and derives a closed form for the leave-one-out cross validation (LOOCV) error of RBF models, allowing an adaptive choice of radial basis functions. In addition, we develop an estimated error bound, which share several desired properties with the kriging variance. This error estimate motivates us to design a novel sampling criterion called weighted improvement, capable of balancing between global search and local search with a tunable parameter. Computational results on 45 popular test problems indicate that the proposed algorithm outperforms several benchmark algorithms. Results also suggest that multiquadrics introduces lowest LOOCV error for small sample size while thin plate splines and inverse multiquadrics shows lower LOOCV error for large sample size.

[1]  F. Al-Shamali,et al.  Author Biographies. , 2015, Journal of social work in disability & rehabilitation.

[2]  Rommel G. Regis,et al.  Stochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functions , 2011, Comput. Oper. Res..

[3]  Greg Fasshauer Meshfree Approximation Methods with Matlab, Lecture 1: Introductory material , 2008 .

[4]  R. Haftka,et al.  Ensemble of surrogates , 2007 .

[5]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[6]  Stefan M. Wild,et al.  Benchmarking Derivative-Free Optimization Algorithms , 2009, SIAM J. Optim..

[7]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[8]  Hans-Martin Gutmann,et al.  A Radial Basis Function Method for Global Optimization , 2001, J. Glob. Optim..

[9]  Mattias Björkman,et al.  Global Optimization of Costly Nonconvex Functions Using Radial Basis Functions , 2000 .

[10]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[11]  Christine A. Shoemaker,et al.  A Stochastic Radial Basis Function Method for the Global Optimization of Expensive Functions , 2007, INFORMS J. Comput..

[12]  Christine A. Shoemaker,et al.  Constrained Global Optimization of Expensive Black Box Functions Using Radial Basis Functions , 2005, J. Glob. Optim..

[13]  Gene H. Golub,et al.  Matrix computations , 1983 .

[14]  Shmuel Rippa,et al.  An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..

[15]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[16]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[17]  Charles Audet,et al.  Mesh Adaptive Direct Search Algorithms for Constrained Optimization , 2006, SIAM J. Optim..

[18]  Christine A. Shoemaker,et al.  Improved Strategies for Radial basis Function Methods for Global Optimization , 2007, J. Glob. Optim..

[19]  A. J. Booker,et al.  A rigorous framework for optimization of expensive functions by surrogates , 1998 .

[20]  M. Patriksson,et al.  A method for simulation based optimization using radial basis functions , 2010 .

[21]  Fabio Schoen,et al.  A wide class of test functions for global optimization , 1993, J. Glob. Optim..