Application of hyperspectral vegetation indices to detect variations in high leaf area index temperate shrub thicket canopies

[1]  G. Holm Chlorophyll Mutations in Barley , 1954 .

[2]  P. G. Jarvis,et al.  Plant photosynthetic production , 1971 .

[3]  P. Jarvis,et al.  Plant photosynthetic production. Manual of methods. , 1971 .

[4]  J. A. Schell,et al.  Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. [Great Plains Corridor] , 1973 .

[5]  D. Horler,et al.  The red edge of plant leaf reflectance , 1983 .

[6]  S. Pickett,et al.  THE ADAPTIVE ARCHITECTURE OF SHRUB CANOPIES: LEAF DISPLAY AND BIOMASS ALLOCATION IN RELATION TO LIGHT ENVIRONMENT , 1983 .

[7]  Autumn Olive Reproduction in Three Illinois State Parks , 1983 .

[8]  John R. Jensen,et al.  Introductory Digital Image Processing: A Remote Sensing Perspective , 1986 .

[9]  S. Archer,et al.  Have Southern Texas Savannas Been Converted to Woodlands in Recent History? , 1989, The American Naturalist.

[10]  J. Dungan,et al.  Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. , 1990, Tree physiology.

[11]  J. Palta,et al.  Leaf chlorophyll content , 1990 .

[12]  Gordon B. Bonan,et al.  Importance of leaf area index and forest type when estimating photosynthesis in boreal forests , 1993 .

[13]  R. L. Wilbur THE MYRICACEAE OF THE UNITED STATES AND CANADA: GENERA, SUBGENERA, AND SERIES , 1994 .

[14]  Richard H. Waring,et al.  Environmental Limits on Net Primary Production and Light‐Use Efficiency Across the Oregon Transect , 1994 .

[15]  Alain Royer,et al.  Measuring Leaf Area Index with the Li‐Cor LAI‐2000 in Pine Stands , 1994 .

[16]  P. Sands Modelling Canopy Production. I. Optimal Distribution of Photosynthetic Resources , 1995 .

[17]  S. T. Gower,et al.  Direct and Indirect Estimation of Leaf Area Index, fAPAR, and Net Primary Production of Terrestrial Ecosystems , 1999 .

[18]  Moon S. Kim,et al.  Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance , 2000 .

[19]  G. Asner,et al.  Satellite observation of El Niño effects on Amazon Forest phenology and productivity , 2000 .

[20]  N. Broge,et al.  Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density , 2001 .

[21]  Wei Chen,et al.  Ocean PHILLS hyperspectral imager: design, characterization, and calibration. , 2002, Optics express.

[22]  R. B. Jackson,et al.  Ecosystem carbon loss with woody plant invasion of grasslands , 2002, Nature.

[23]  John R. Miller,et al.  Vegetation stress detection through chlorophyll a + b estimation and fluorescence effects on hyperspectral imagery. , 2002, Journal of environmental quality.

[24]  Daniel S. Falster,et al.  Leaf size and angle vary widely across species: what consequences for light interception? , 2003, The New phytologist.

[25]  A. Knapp,et al.  Consequences of shrub expansion in mesic grassland: Resource alterations and graminoid responses , 2003 .

[26]  J. Benítez‐Malvido,et al.  Impact of Forest Fragmentation on Understory Plant Species Richness in Amazonia , 2003 .

[27]  Richard A. Houghton,et al.  Why are estimates of the terrestrial carbon balance so different? , 2003 .

[28]  G. Asner,et al.  Drought stress and carbon uptake in an Amazon forest measured with spaceborne imaging spectroscopy. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  John R. Miller,et al.  Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture , 2004 .

[30]  D. Turner,et al.  Integrating Remote Sensing and Ecosystem Process Models for Landscape- to Regional-Scale Analysis of the Carbon Cycle , 2004 .

[31]  R. J. Porra,et al.  The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b , 2004, Photosynthesis Research.

[32]  C. Justice,et al.  Land change science : observing, monitoring and understanding trajectories of change on the Earth's surface , 2004 .

[33]  A. Viña,et al.  Remote estimation of canopy chlorophyll content in crops , 2005 .

[34]  J. Welker,et al.  Winter Biological Processes Could Help Convert Arctic Tundra to Shrubland , 2005 .

[35]  J. Tenhunen,et al.  On the relationship of NDVI with leaf area index in a deciduous forest site , 2005 .

[36]  J. Blair,et al.  An Ecosystem in Transition: Causes and Consequences of the Conversion of Mesic Grassland to Shrubland , 2005 .

[37]  J. Groninger,et al.  Changes in intrasystem N cycling from N2-fixing shrub encroachment in grassland: multiple positive feedbacks , 2006 .

[38]  S. Pickett,et al.  THE ROLE OF BRANCH LENGTH AND ANGLE IN BRANCHING PATTERN OF FOREST SHRUBS ALONG A SUCCESSIONAL GRADIENT , 2006 .

[39]  D. Young,et al.  Linking leaf chlorophyll fluorescence properties to physiological responses for detection of salt and drought stress in coastal plant species. , 2007, Physiologia plantarum.

[40]  Linking Leaf Chlorophyll Fluorescence Properties to Physiological Responses for Stress Detection in Coastal Plant Species , 2007 .

[41]  J. McMurtrey,et al.  Assessment of vegetation stress using reflectance or fluorescence measurements. , 2007, Journal of environmental quality.

[42]  S. Brantley,et al.  Shifts in litterfall and dominant nitrogen sources after expansion of shrub thickets , 2008, Oecologia.

[43]  Mathias Disney,et al.  Can we measure terrestrial photosynthesis from space directly, using spectral reflectance and fluorescence? , 2007 .

[44]  S. Brantley,et al.  Leaf-area index and light attenuation in rapidly expanding shrub thickets. , 2007, Ecology.

[45]  Jeffrey H. Bowles,et al.  Cross-Scale Patterns in Shrub Thicket Dynamics in the Virginia Barrier Complex , 2007, Ecosystems.

[46]  Julie C. Naumann,et al.  Leaf chlorophyll fluorescence, reflectance, and physiological response to freshwater and saltwater flooding in the evergreen shrub, Myrica cerifera , 2008 .

[47]  Jing M. Chen,et al.  Leaf chlorophyll content retrieval from airborne hyperspectral remote sensing imagery , 2008 .

[48]  J. O H,et al.  Shrub encroachment in North American grasslands: shifts in growth form dominance rapidly alters control of ecosystem carbon inputs , 2008 .

[49]  Julie C. Naumann,et al.  Linking Physiological Responses, Chlorophyll Fluorescence and Hyperspectral Imagery to Detect Salinity Stress Using the Physiological Reflectance Index in the Coastal Shrub, Myrica cerifera , 2008 .

[50]  Julie C. Naumann,et al.  Spatial variations in salinity stress across a coastal landscape using vegetation indices derived from hyperspectral imagery , 2009, Plant Ecology.

[51]  W. Kurz,et al.  Monitoring carbon stocks in the tropics and the remote sensing operational limitations: from local to regional projects. , 2009, Ecological applications : a publication of the Ecological Society of America.

[52]  Thomas Hilker,et al.  Linking foliage spectral responses to canopy-level ecosystem photosynthetic light-use efficiency at a Douglas-fir forest in Canada , 2009 .

[53]  S. Brantley,et al.  Linking light attenuation, sunflecks, and canopy architecture in mesic shrub thickets , 2010, Plant Ecology.

[54]  J. Berni,et al.  ' s personal copy Imaging chlorophyll fl uorescence with an airborne narrow-band multispectral camera for vegetation stress detection , 2009 .

[55]  S. Brantley,et al.  Shrub expansion stimulates soil C and N storage along a coastal soil chronosequence , 2010 .

[56]  G. Asner,et al.  Woodland Expansion in US Grasslands , 2012 .

[57]  N. H. Brogea,et al.  Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density , 2022 .