Picturing Peripheral Acuity

The grain of the retina becomes progressively coarser from the fovea to the periphery. This is caused by the decreasing number of retinal receptive fields and decreasing amount of cortex devoted to each degree of visual field (= cortical magnification factor) as one goes into the periphery. We simulate this with a picture that is progressively blurred towards its edges; when strictly fixated at its centre it looks equally sharp all over.

[1]  S. Anstis Adaptation to Peripheral Flicker , 1996, Vision Research.

[2]  George Mather,et al.  Image blur as a pictorial depth cue , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[3]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[4]  O. Grüsser Migraine phosphenes and the retino-cortical magnification factor , 1995, Vision Research.

[5]  C Meinecke,et al.  Peripheral and foveal segmentation of angle textures , 1994, Perception & psychophysics.

[6]  J. Koenderink,et al.  Deviations from strict M scaling , 1992 .

[7]  G. Westheimer Sharpness discrimination for foveal targets. , 1991, Journal of the Optical Society of America. A, Optics and image science.

[8]  Dennis M. Levi,et al.  Equivalent intrinsic blur in spatial vision , 1990, Vision Research.

[9]  Jyrki Rovamo,et al.  Cortical acuity and the luminous flux collected by retinal ganglion cells at various eccentricities in human rod and cone vision , 1990, Vision Research.

[10]  C. Curcio,et al.  Topography of ganglion cells in human retina , 1990, The Journal of comparative neurology.

[11]  A. Hendrickson,et al.  Human photoreceptor topography , 1990, The Journal of comparative neurology.

[12]  N. Drasdo,et al.  Receptive field densities of the ganglion cells of the human retina , 1989, Vision Research.

[13]  George J. Carman,et al.  In vivo functional localization of the human visual cortex using positron emission tomography and magnetic resonance imaging , 1989, Trends in Neurosciences.

[14]  B. Boycott,et al.  Cortical magnification factor and the ganglion cell density of the primate retina , 1989, Nature.

[15]  R F Hess,et al.  How are spatial filters used in fovea and parafovea? , 1989, Journal of the Optical Society of America. A, Optics and image science.

[16]  Jukka Saarinen,et al.  Detection of mirror symmetry in random dot patterns at different eccentricities , 1988, Vision Research.

[17]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. III. Color , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. II. Retinotopic organization , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  R. Haines,et al.  Vertical displacement threshold sensitivity along the horizontal meridian as a function of stimulus rate, duration, and length. , 1988, Aviation, space, and environmental medicine.

[20]  S. Schein Anatomy of macaque fovea and spatial densities of neurons in foveal representation , 1988, The Journal of comparative neurology.

[21]  J Saarinen,et al.  Perception of Positional Relationships between Line Segments in Eccentric Vision , 1987, Perception.

[22]  J Rovamo,et al.  Texture discrimination at different eccentricities. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[23]  S. Anstis,et al.  Magnification factor for adaptation of a visual transient mechanism. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[24]  S. Schein,et al.  Mapping of retinal and geniculate neurons onto striate cortex of macaque , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  D. V. van Essen,et al.  Retinotopic organization of human visual cortex mapped with positron- emission tomography , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  Jyrki Rovamo,et al.  Perimetry of critical flicker frequency in human rod and cone vision , 1986, Vision Research.

[27]  J. Pointer VISUAL REPRESENTATION AT THE CEREBRAL CORTEX: QUALITATIVE AND QUANTITATIVE ASPECTS , 1986, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[28]  A. Johnston,et al.  Invariant tuning of motion aftereffect , 1985, Vision Research.

[29]  S. Klein,et al.  Vernier acuity, crowding and cortical magnification , 1985, Vision Research.

[30]  Jyrki Rovamo,et al.  Critical flicker frequency and M-scaling of stimulus size and retinal illuminance , 1984, Vision Research.

[31]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[32]  J. Koenderink,et al.  The sensitivity of the peripheral visual system to amplitude-modulation and frequency-modulation of sine-wave patterns , 1984, Vision Research.

[33]  J J Koenderink,et al.  Spectral sensitivity and wavelength discrimination of the human peripheral visual field. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[34]  R. Watt,et al.  The recognition and representation of edge blur: Evidence for spatial primitives in human vision , 1983, Vision Research.

[35]  J J Koenderink,et al.  Detection of coherent movement in peripherally viewed random-dot patterns. , 1983, Journal of the Optical Society of America.

[36]  M. J. Wright,et al.  Visual motion and cortical velocity , 1983, Nature.

[37]  D. R. Hampton,et al.  The Extent of Panum's Area and the Human Cortical Magnification Factor , 1983, Perception.

[38]  Andrew B. Watson,et al.  Detection and Recognition of Simple Spatial Forms , 1983 .

[39]  J. Rovamo,et al.  Temporal contrast sensitivity and cortical magnification , 1982, Vision Research.

[40]  E. Switkes,et al.  Deoxyglucose analysis of retinotopic organization in primate striate cortex. , 1982, Science.

[41]  Lothar Spillmann,et al.  Perceptive field size in fovea and periphery of the light- and dark-adapted retina , 1980, Vision Research.

[42]  Eric L. Schwartz,et al.  Computational anatomy and functional architecture of striate cortex: A spatial mapping approach to perceptual coding , 1980, Vision Research.

[43]  T Wertheim,et al.  Peripheral visual acuity: Th. Wertheim. , 1980, American journal of optometry and physiological optics.

[44]  W H Dobelle,et al.  Mapping the representation of the visual field by electrical stimulation of human visual cortex. , 1979, American journal of ophthalmology.

[45]  M. A. Bouman,et al.  Perimetry of contrast detection thresholds of moving spatial sine wave patterns. III. The target extent as a sensitivity controlling parameter. , 1978, Journal of the Optical Society of America.

[46]  J. Rovamo,et al.  Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision , 1978, Nature.

[47]  J M Allman,et al.  Magnification in striate cortex and retinal ganglion cell layer of owl monkey: a quantitative comparison , 1977, Science.

[48]  N. Drasdo The neural representation of visual space , 1977, Nature.

[49]  D. Hubel,et al.  Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor , 1974, The Journal of comparative neurology.

[50]  N Drasdo,et al.  Non-linear projection of the retinal image in a wide-angle schematic eye. , 1974, The British journal of ophthalmology.

[51]  S M Anstis,et al.  Letter: A chart demonstrating variations in acuity with retinal position. , 1974, Vision research.

[52]  G. Westheimer Spatial interaction in human cone vision , 1967, The Journal of physiology.

[53]  D. J. Brown,et al.  Peripheral visual acuity. , 1966, Archives of ophthalmology.

[54]  D. Whitteridge,et al.  The representation of the visual field on the cerebral cortex in monkeys , 1961, The Journal of physiology.

[55]  F. W. Weymouth Visual sensory units and the minimal angle of resolution. , 1958, American journal of ophthalmology.

[56]  L L SLOAN,et al.  Peripheral visual acuity with special reference to scotopic illumination. , 1947, American journal of ophthalmology.

[57]  Michael F. Land,et al.  The Functions of Eye Movements in Animals Remote from Man , 1995 .

[58]  Eric L. Schwartz,et al.  Computational Studies of the Spatial Architecture of Primate Visual Cortex , 1994 .

[59]  J. Rovamo,et al.  Models of the Visual Cortex on the Basis of Psychophysical Observations , 1993 .

[60]  Hugh R. Wilson,et al.  10 – THE PERCEPTION OF FORM: Retina to Striate Cortex , 1989 .

[61]  D. H. Kelly,et al.  Retinal inhomogeneity. I. Spatiotemporal contrast sensitivity. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[62]  H. Teuber,et al.  Visual Field Defects after Penetrating Missile Wounds of the Brain , 1960 .