Modern aragonite formation at near-freezing conditions in an alpine cave, Carnic Alps, Austria

[1]  Archaeal Distribution in Moonmilk Deposits from Alpine Caves and Their Ecophysiological Potential , 2016, Microbial Ecology.

[2]  M. Lachniet Are aragonite stalagmites reliable paleoclimate proxies? Tests for oxygen isotope time-series replication and equilibrium , 2015 .

[3]  Keith M. Prufer,et al.  Aerosol forcing of the position of the intertropical convergence zone since ad 1550 , 2015 .

[4]  R. Drysdale,et al.  Evidence for global teleconnections in a late Pleistocene speleothem record of water balance and vegetation change at Sudwala Cave, South Africa , 2015 .

[5]  S. Constantin,et al.  Physicochemical characteristics of drip waters: Influence on mineralogy and crystal morphology of recent cave carbonate precipitates , 2014 .

[6]  T. Ludwig,et al.  Relationships between colour and diagenesis in the aragonite-calcite speleothems in Basajaún Etxea cave, Spain , 2014 .

[7]  R. Edwards,et al.  Variation in the Asian monsoon intensity and dry–wet conditions since the Little Ice Age in central China revealed by an aragonite stalagmite , 2014 .

[8]  Z. An,et al.  Stable isotope composition alteration produced by the aragonite-to-calcite transformation in speleothems and implications for paleoclimate reconstructions , 2014 .

[9]  Patrick Cabrol,et al.  Aragonite–Calcite Speleothems: Identifying Original and Diagenetic Features , 2014 .

[10]  R. Edwards,et al.  Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry , 2013 .

[11]  K. Różański,et al.  Concentration of Radiocarbon in Soil-Respired CO2 Flux: Data-Model Comparison for Three Different Ecosystems in Southern Poland , 2013, Radiocarbon.

[12]  G. Henderson,et al.  Speleothems Reveal 500,000-Year History of Siberian Permafrost , 2013, Science.

[13]  A. Niedermayr,et al.  Impacts of aqueous carbonate accumulation rate, magnesium and polyaspartic acid on calcium carbonate formation (6-40°C) , 2013 .

[14]  David L. Parkhurst,et al.  Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations , 2013 .

[15]  M. Lachniet,et al.  Uranium loss and aragonite–calcite age discordance in a calcitized aragonite stalagmite , 2012 .

[16]  J. Fohlmeister,et al.  Isotope disequilibrium effects: The influence of evaporation and ventilation effects on the carbon and oxygen isotope composition of speleothems – A model approach , 2012 .

[17]  K. Jochum,et al.  Climate and cave control on Pleistocene/Holocene calcite-to-aragonite transitions in speleothems from Morocco: Elemental and isotopic evidence , 2012 .

[18]  C. Spötl,et al.  Stable isotopes in caves over altitudinal gradients: fractionation behaviour and inferences for speleothem sensitivity to climate change , 2012 .

[19]  M. Tan,et al.  The growth mechanism of the aragonitic stalagmite laminae from Yunnan Xianren Cave, SW China revealed by cave monitoring , 2012 .

[20]  Yang Wang,et al.  Speleothem calcite farmed in situ: Modern calibration of δ18O and δ13C paleoclimate proxies in a continuously-monitored natural cave system , 2011 .

[21]  H. Chiang,et al.  Oxygen and carbon isotopic systematics of aragonite speleothems and water in Furong Cave, Chongqing, China. , 2011 .

[22]  C. Spötl,et al.  Origin and palaeoenvironmental significance of lamination in stalagmites from Katerloch Cave, Austria , 2011 .

[23]  D. Scholz,et al.  Climatic dependence of stable carbon and oxygen isotope signals recorded in speleothems: From soil water to speleothem calcite , 2011 .

[24]  Andrea Borsato,et al.  Carbon mass-balance modelling and carbon isotope exchange processes in dynamic caves , 2011 .

[25]  Denis Scholz,et al.  Modelling fractionation of stable isotopes in stalagmites. , 2009 .

[26]  A. M. Alonso-Zarza,et al.  Loss of primary texture and geochemical signatures in speleothems due to diagenesis: Evidences from Castañar Cave, Spain , 2009 .

[27]  L. González,et al.  Calcite and Aragonite Precipitation Under Controlled Instantaneous Supersaturation: Elucidating the Role of CaCO3 Saturation State and Mg/Ca Ratio on Calcium Carbonate Polymorphism , 2009 .

[28]  C. Hillaire‐Marcel,et al.  Oxygen isotope fractionation between synthetic aragonite and water: Influence of temperature and Mg2+ concentration , 2007 .

[29]  M. Suter,et al.  MICADAS: A new compact radiocarbon AMS system , 2007 .

[30]  M. Joachimski,et al.  Carbon isotope stratigraphy of the Devonian of Central and Southern Europe , 2006 .

[31]  D. Scholz,et al.  A precisely dated climate record for the last 9 kyr from three high alpine stalagmites, Spannagel Cave, Austria , 2006 .

[32]  G. Deves,et al.  High-resolution mapping of uranium and other trace elements in recrystallized aragonite–calcite speleothems from caves in the Pyrenees (France): Implication for U-series dating , 2005 .

[33]  C. Spötl,et al.  High-precision constraints on timing of Alpine warm periods during the middle to late Pleistocene using speleothem growth periods , 2005 .

[34]  C. Spötl,et al.  Reconstruction of temperature in the Central Alps during the past 2000 yr from a δ18O stalagmite record , 2005 .

[35]  F. McDermott,et al.  Annual trace element cycles in calcite–aragonite speleothems: evidence of drought in the western Mediterranean 1200–1100 yr BP , 2005 .

[36]  Christoph Spötl,et al.  Cave air control on dripwater geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves , 2005 .

[37]  W. Buggisch,et al.  Carbon isotope stratigraphy of Lochkovian to Eifelian limestones from the Devonian of central and southern Europe , 2004 .

[38]  F. McDermott,et al.  Late Holocene annual growth in three Alpine stalagmites records the influence of solar activity and the North Atlantic Oscillation on winter climate , 2003 .

[39]  K. Holmgren,et al.  Corroborated rainfall records from aragonitic stalagmites , 2003 .

[40]  C. Spötl,et al.  Continuous-flow isotope ratio mass spectrometric analysis of carbonate minerals. , 2003, Rapid communications in mass spectrometry : RCM.

[41]  C. Spötl,et al.  Carbonate Speleothems in the Dry, Inneralpine Vinschgau Valley, Northernmost Italy: Witnesses of Changes in Climate and Hydrology Since the Last Glacial Maximum , 2002 .

[42]  C. Spötl,et al.  Stalagmite from the Austrian Alps reveals Dansgaard^Oeschger events during isotope stage 3: Implications for the absolute chronology of Greenland ice cores , 2002 .

[43]  Andrea Borsato,et al.  Aragonite-Calcite Relationships in Speleothems (Grotte De Clamouse, France): Environment, Fabrics, and Carbonate Geochemistry , 2002 .

[44]  Yemane Asmerom,et al.  Late Holocene Climate and Cultural Changes in the Southwestern United States , 2001, Science.

[45]  C. Saiz-Jimenez,et al.  Microbial communities associated with hydromagnesite and needle-fiber aragonite deposits in a karstic cave (Altamira, Northern Spain) , 1999 .

[46]  D. L. Parkhurst,et al.  User's guide to PHREEQC (Version 2)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations , 1999 .

[47]  Sang-Tae Kim,et al.  Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates , 1997 .

[48]  R. Kalin,et al.  Environmental Controls on the Petrology of a Late Holocene Speleothem from Botswana with Annual Layers of Aragonite and Calcite , 1994 .

[49]  C. Romanek,et al.  Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate , 1992 .

[50]  K. Münnich,et al.  Annual variations of the (super 14) C content of soil CO (sub 2) . , 1986 .

[51]  T. Cerling The stable isotopic composition of modern soil carbonate and its relationship to climate , 1984 .

[52]  G. Müller,et al.  Monohydrocalcite, hydromagnesite, nesquehonite, dolomite, aragonite, and calcite in speleothems of the Fränkische Schweiz, Western Germany , 1971 .