Robust Mechanism Design

The mechanism design literature assumes too much common knowledge of the environment among the players and planner. We relax this assumption by studying implementation on richer type spaces, with more higher order uncertainty. We study the "ex post equivalence" question: When is interim implementation on all possible type spaces equivalent to requiring ex post implementation on the space of payoff types? We show that ex post equivalence holds when the social choice correspondence is a function and in simple quasi-linear environments. When ex post equivalence holds, we identify how large the type space must be to obtain the equivalence. We also show that ex post equivalence fails in general, including in quasi-linear environments with budget balance. For quasi-linear environments, we provide an exact characterization of when interim implementation is possible in rich type spaces. In this environment, the planner can fully extract players' belief types, so the incentive constraints reduce to conditions distinguishing types with the same beliefs about others' types but different payoff types.(This abstract was borrowed from another version of this item.)

[1]  J. Harsanyi Games with Incomplete Information Played by 'Bayesian' Players, Part III. The Basic Probability Distribution of the Game , 1968 .

[2]  A. Ostaszewski TOPOLOGY AND BOREL STRUCTURE , 1976 .

[3]  L. Hurwicz On informationally decentralized systems , 1977 .

[4]  J. Ledyard Incentive compatibility and incomplete information , 1978 .

[5]  C. d'Aspremont,et al.  Incentives and incomplete information , 1979 .

[6]  E. Maskin,et al.  The Implementation of Social Choice Rules: Some General Results on Incentive Compatibility , 1979 .

[7]  M. Walker On the Nonexistence of a Dominant Strategy Mechanism for Making Optimal Public Decisions , 1980 .

[8]  Stefan Reichelstein,et al.  On the Informational Requirements for the Implementation of Social Choice Rules , 1981 .

[9]  Roger B. Myerson,et al.  Optimal Auction Design , 1981, Math. Oper. Res..

[10]  R. Myerson,et al.  Efficient and Durable Decision Rules with Incomplete Information , 1983 .

[11]  Robert B. Wilson Game-Theoretic Analysis of Trading Processes. , 1985 .

[12]  S. Zamir,et al.  Formulation of Bayesian analysis for games with incomplete information , 1985 .

[13]  Robert H. Wilson Incentive Efficiency of Double Auctions , 1985 .

[14]  Richard P. McLean,et al.  Optimal Selling Strategies under Uncertainty for a Discriminating Monopolist When Demands Are Interdependent , 1985 .

[15]  Andrew Postlewaite,et al.  Implementation in differential information economies , 1986 .

[16]  W. Rogerson,et al.  Robust trading mechanisms , 1987 .

[17]  Adam Brandenburger,et al.  Rationalizability and Correlated Equilibria , 1987 .

[18]  Richard P. McLean,et al.  FULL EXTRACTION OF THE SURPLUS IN BAYESIAN AND DOMINANT STRATEGY AUCTIONS , 1988 .

[19]  J. Robert Continuity In Auction Design , 1991 .

[20]  T. Palfrey,et al.  Implementation with Incomplete Information in Exchange Economies , 1989 .

[21]  H. Siebert Privatization : symposium in honor of Herbert Giersch , 1992 .

[22]  P. Reny,et al.  Correlated Information and Mechanism Design , 1992 .

[23]  Dilip Mookherjee,et al.  Dominant Strategy Implementation of Bayesian incentive Compatible Allocation Rules , 1992 .

[24]  E. Maskin,et al.  Auctions and Privatization , 1992 .

[25]  Hitoshi Matsushima,et al.  Virtual implementation in iteratively undominated strategies: complete information , 1992 .

[26]  B. Hunt Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces , 1992, math/9210220.

[27]  Eddie Dekel,et al.  Hierarchies of Beliefs and Common Knowledge , 1993 .

[28]  A. Heifetz The bayesian formulation of incomplete information — The non-compact case , 1993 .

[29]  Sylvain Sorin,et al.  Repeated Games. Part A: Background Material , 1994 .

[30]  A. Mas-Colell,et al.  Microeconomic Theory , 1995 .

[31]  B. Moldovanu,et al.  E ¢ cient Design with Interdependent Valuations , 1996 .

[32]  A. Heifetz,et al.  Topology-Free Typology of Beliefs , 1998 .

[33]  S. Morris,et al.  The Robustness of Equilibria to Incomplete Information , 1997 .

[34]  Barton L. Lipman,et al.  FINITE ORDER IMPLICATIONS OF COMMON PRIORS , 1997 .

[35]  B. Moldovanu,et al.  Efficient Design with Interdependent Valuations , 2001 .

[36]  Faruk Gul A Comment on Aumann's Bayesian View , 1998 .

[37]  Giuseppe Lopomo The English Auction Is Optimal Among Simple Sequential Auctions , 1998 .

[38]  Philip J. Reny,et al.  An Ex-Post E¢cient Auction¤ , 1999 .

[39]  Taesung Kim,et al.  A Nonparametric, Efficient Public Good Decision Mechanism: Undominated Bayesian Implementation , 1999 .

[40]  E. Maskin Nash Equilibrium and Welfare Optimality , 1999 .

[41]  Pierpaolo Battigalli,et al.  Rationalizability in Incomplete Information Games , 1999 .

[42]  Philip J. Reny,et al.  An ex-post efficient auction , 1999 .

[43]  Dov Samet,et al.  Coherent beliefs are not always types , 1999 .

[44]  Dirk Bergemann,et al.  Information Acquisition and Efficient Mechanism Design , 2000 .

[45]  Vol Cxv Issue EFFICIENT AUCTIONS , 2000 .

[46]  Yossi Feinberg,et al.  Characterizing Common Priors in the Form of Posteriors , 2000, J. Econ. Theory.

[47]  S. Morris,et al.  Global Games: Theory and Applications , 2001 .

[48]  Giuseppe Lopomo Optimality and Robustness of the English Auction , 2001, Games Econ. Behav..

[49]  Eric Maskin,et al.  Auctions and Efficiency , 2001 .

[50]  William R. Zame,et al.  Genericity with Infinitely Many Parameters , 2001 .

[51]  T. Sargent,et al.  Robust Control and Model Uncertainty , 2001 .

[52]  P. Reny,et al.  AN EFFICIENT AUCTION , 2002 .

[53]  K. Eliaz Fault Tolerant Implementation , 2002 .

[54]  Pierpaolo Battigalli,et al.  Rationalization and Incomplete Information , 2003 .

[55]  Jacques Crémer,et al.  Correlation, independence, and Bayesian incentives , 2003, Soc. Choice Welf..

[56]  Jeffrey C. Ely,et al.  Implementation with Near-Complete Information , 2003 .

[57]  Zvika Neeman,et al.  The relevance of private information in mechanism design , 2004, J. Econ. Theory.

[58]  Jacques Crémer,et al.  Balanced Bayesian Mechanisms ∗ , 2017 .

[59]  John C. Harsanyi,et al.  Games with Incomplete Information Played by "Bayesian" Players, I-III: Part I. The Basic Model& , 2004, Manag. Sci..

[60]  E. Kalai Large Robust Games , 2004 .

[61]  Drew Fudenberg,et al.  Learning to Play Bayesian Games , 2001, Games Econ. Behav..

[62]  Stephen Morris,et al.  Robust Implementation: The Role of Large Type Spaces , 2005 .

[63]  Stephen Morris,et al.  Topologies on Types , 2005 .

[64]  B. Moldovanu,et al.  The Limits of ex post Implementation , 2006 .