The monotone cumulants

In the present paper we define the notion of generalized cumulants which gives a universal framework for commutative, free, Boolean, and especially, monotone probability theories. The uniqueness of generalized cumulants holds for each independence, and hence, generalized cumulants are equal to the usual cumulants in the commutative, free and Boolean cases. The way we define (generalized) cumulants needs neither partition lattices nor generating functions and then will give a new viewpoint to cumulants. We define ``monotone cumulants'' in the sense of generalized cumulants and we obtain quite simple proofs of central limit theorem and Poisson's law of small numbers in monotone probability theory. Moreover, we clarify a combinatorial structure of moment-cumulant formula with the use of ``monotone partitions''.

[1]  Takahiro Hasebe,et al.  Joint cumulants for natural independence , 2010, 1005.3900.

[2]  H. Saigo A simple proof for monotone CLT , 2009, 0912.3728.

[3]  R. Lenczewski,et al.  NONCOMMUTATIVE BROWNIAN MOTIONS ASSOCIATED WITH KESTEN DISTRIBUTIONS AND RELATED POISSON PROCESSES , 2008 .

[4]  A. Belton On the path structure of a semimartingale arising from monotone probability theory , 2007, 0709.3788.

[5]  A. Hora,et al.  Quantum Probability and Spectral Analysis of Graphs , 2007 .

[6]  R. Lenczewski,et al.  DISCRETE INTERPOLATION BETWEEN MONOTONE PROBABILITY AND FREE PROBABILITY , 2005, math/0502570.

[7]  E. Nardo,et al.  Umbral nature of the Poisson random variables , 2004, math/0412054.

[8]  F. Lehner Cumulants in Noncommutative Probability Theory IV. De Finetti's Theorem, $L^p$-Inequalities and Brillinger's Formula , 2004, math/0409025.

[9]  N. Muraki THE FIVE INDEPENDENCES AS NATURAL PRODUCTS , 2003 .

[10]  F. Lehner Cumulants in noncommutative probability theory II , 2003 .

[11]  A. Ghorbal,et al.  Non-commutative notions of stochastic independence , 2002, Mathematical Proceedings of the Cambridge Philosophical Society.

[12]  N. Muraki THE FIVE INDEPENDENCES AS QUASI-UNIVERSAL PRODUCTS , 2002 .

[13]  Naofumi Muraki,et al.  MONOTONIC INDEPENDENCE, MONOTONIC CENTRAL LIMIT THEOREM AND MONOTONIC LAW OF SMALL NUMBERS , 2001 .

[14]  N. Muraki Noncommutative Brownian Motion in Monotone Fock Space , 1997 .

[15]  Gian-Carlo Rota,et al.  The classical umbral calculus , 1994 .

[16]  D. Voiculescu Addition of certain non-commuting random variables , 1986 .

[17]  Muraki Monotonic convolution and monotonic Lévy-Hinčin formula , 2007 .

[18]  A. Belton A note on vacuum-adapted semimartingales and monotone independence , 2005 .

[19]  H. Crapo,et al.  Algebraic Combinatorics and Computer Science: A Tribute to Gian-Carlo Rota , 2001 .

[20]  Y. Lu Interacting free Fock space and the Arcsine law , 1997 .

[21]  R. Speicher Multiplicative functions on the lattice of non-crossing partitions and free convolution , 1994 .

[22]  R. Speicher,et al.  Boolean Convolution , 1993 .

[23]  Alexandru Nica,et al.  Free random variables , 1992 .

[24]  D. Voiculescu Symmetries of some reduced free product C*-algebras , 1985 .

[25]  Calvin C. Moore,et al.  Operator Algebras and their Connections with Topology and Ergodic Theory , 1985 .

[26]  Kai Lai Chung,et al.  A Course in Probability Theory , 1949 .