Specific splice junction detection in single cells with SICILIAN

[1]  J. Salzman,et al.  The SpliZ generalizes ‘percent spliced in’ to reveal regulated splicing at single-cell resolution , 2022, Nature Methods.

[2]  S. Quake,et al.  RNA splicing programs define tissue compartments and cell types at single cell resolution , 2021, bioRxiv.

[3]  Yun S. Song,et al.  Robust and annotation-free analysis of alternative splicing across diverse cell types in mice , 2021, bioRxiv.

[4]  J. Salzman,et al.  The SZS is an efficient statistical method to identify regulated splicing events in droplet-based RNA sequencing , 2020, bioRxiv.

[5]  O. Delaneau,et al.  High-throughput SARS-CoV-2 and host genome sequencing from single nasopharyngeal swabs , 2020, medRxiv.

[6]  Martin Hemberg,et al.  Obstacles to detecting isoforms using full-length scRNA-seq data , 2020, Genome Biology.

[7]  Sean K. Maden,et al.  Putatively cancer-specific exon–exon junctions are shared across patients and present in developmental and other non-cancer cells , 2020, NAR cancer.

[8]  Xuegong Zhang,et al.  Single-cell alternative splicing analysis reveals dominance of single transcript variant. , 2020, Genomics.

[9]  Pascal Barbry,et al.  High throughput error corrected Nanopore single cell transcriptome sequencing , 2019, Nature Communications.

[10]  Gene W. Yeo,et al.  Principles of RNA processing from analysis of enhanced CLIP maps for 150 RNA binding proteins , 2019, Genome Biology.

[11]  M. Hemberg,et al.  Obstacles to Studying Alternative Splicing Using scRNA-seq , 2019, bioRxiv.

[12]  Michael P. Snyder,et al.  Template-switching artifacts resemble alternative polyadenylation , 2019, BMC Genomics.

[13]  Irving L. Weissman,et al.  A molecular cell atlas of the human lung from single cell RNA sequencing , 2019, Nature.

[14]  Fabian J. Theis,et al.  The Human Lung Cell Atlas - A high-resolution reference map of the human lung in health and disease. , 2019, American journal of respiratory cell and molecular biology.

[15]  Lior Pachter,et al.  Modular and efficient pre-processing of single-cell RNA-seq , 2019, bioRxiv.

[16]  E. Lehnert,et al.  Improved detection of gene fusions by applying statistical methods reveals oncogenic RNA cancer drivers , 2019, Proceedings of the National Academy of Sciences.

[17]  Luyi Tian,et al.  Benchmarking single cell RNA-sequencing analysis pipelines using mixture control experiments , 2019, Nature Methods.

[18]  M. Guarracino,et al.  Exploiting single-cell RNA sequencing data to link alternative splicing and cancer heterogeneity: A computational approach. , 2019, The international journal of biochemistry & cell biology.

[19]  S. Salzberg,et al.  CHESS: a new human gene catalog curated from thousands of large-scale RNA sequencing experiments reveals extensive transcriptional noise , 2018, Genome Biology.

[20]  Steven J. M. Jones,et al.  Comprehensive Analysis of Alternative Splicing Across Tumors from 8,705 Patients , 2018, Cancer cell.

[21]  Aakrosh Ratan,et al.  SONiCS: PCR stutter noise correction in genome-scale microsatellites , 2018, Bioinform..

[22]  S. Salzberg,et al.  Thousands of large-scale RNA sequencing experiments yield a comprehensive new human gene list and reveal extensive transcriptional noise , 2018, bioRxiv.

[23]  Neva C. Durand,et al.  Hybrid de novo genome assembly and centromere characterization of the gray mouse lemur (Microcebus murinus) , 2017, BMC Biology.

[24]  A. Sethi,et al.  The Cancer Genomics Cloud: Collaborative, Reproducible, and Democratized-A New Paradigm in Large-Scale Computational Research. , 2017, Cancer research.

[25]  G. Sanguinetti,et al.  BRIE: transcriptome-wide splicing quantification in single cells , 2017, Genome Biology.

[26]  E. A. Sweet-Cordero,et al.  Statistical algorithms improve accuracy of gene fusion detection , 2017, Nucleic acids research.

[27]  F. Baralle,et al.  Alternative splicing as a regulator of development and tissue identity , 2017, Nature Reviews Molecular Cell Biology.

[28]  G. Sanguinetti,et al.  Transcriptome-wide splicing quantification in single cells , 2017, bioRxiv.

[29]  J. Salzman,et al.  Detecting circular RNAs: bioinformatic and experimental challenges , 2016, Nature Reviews Genetics.

[30]  Grace X. Y. Zheng,et al.  Massively parallel digital transcriptional profiling of single cells , 2016, Nature Communications.

[31]  A. Heger,et al.  UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy , 2016, bioRxiv.

[32]  M. Swanson,et al.  RNA mis-splicing in disease , 2015, Nature Reviews Genetics.

[33]  Latarsha J. Carithers,et al.  The Genotype-Tissue Expression (GTEx) Project. , 2015, Biopreservation and biobanking.

[34]  L. Laurent,et al.  Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development , 2015, Genome Biology.

[35]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[36]  J. Harrow,et al.  Systematic evaluation of spliced alignment programs for RNA-seq data , 2013, Nature Methods.

[37]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[38]  David Haussler,et al.  The UCSC genome browser and associated tools , 2012, Briefings Bioinform..

[39]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[40]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[41]  Ramón Román-Roldán,et al.  Application of information theory to DNA sequence analysis: A review , 1996, Pattern Recognit..

[42]  H. Woodrow,et al.  : A Review of the , 2018 .

[43]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[44]  Ainhoa Berciano-Alcaraz,et al.  A computational approach of , 2010 .

[45]  Oiwi Parker Jones,et al.  A Computational Approach , 2008 .