Spectral Theory of Partial Differential Equations - Lecture Notes

This mini-course of 20 lectures aims at highlights of spectral theory for self-adjoint partial differential operators, with a heavy emphasis on problems with discrete spectrum. Part I: Discrete Spectrum (ODE preview, Laplacian - computable spectra, Schroedinger - computable spectra, Discrete spectral theorem via sesquilinear forms, Laplace eigenfunctions, Natural boundary conditions, Magnetic Laplacian, Schroedinger in confining well, Variational characterizations, Monotonicity of eigenvalues, Weyl's asymptotic, Polya's conjecture, Reaction-diffusion stability, Thin fluid film stability) Part II: Continuous Spectrum (Laplacian on whole space, Schroedinger with $-2sech^2$ potential, Selfadjoint operators, Spectra: discrete and continuous, Discrete spectrum revisited)

[1]  Philippe Blanchard,et al.  Variational Methods in Mathematical Physics , 1992 .

[2]  Israel Michael Sigal,et al.  Introduction to Spectral Theory: With Applications to Schrödinger Operators , 1995 .

[3]  Israel Michael Sigal,et al.  Introduction to Spectral Theory , 1996 .

[4]  Giles Auchmuty Bases and comparison results for linear elliptic eigenproblems , 2012 .

[5]  George Polya,et al.  On the Eigenvalues of Vibrating Membranes(In Memoriam Hermann Weyl) , 1961 .

[6]  Antoine Henrot,et al.  Extremum Problems for Eigenvalues of Elliptic Operators , 2006 .

[7]  Iosif Polterovich,et al.  Maximization of the second positive Neumann eigenvalue for planar domains , 2008, 0801.2142.

[8]  An Isoperimetric Inequality for Fundamental Tones of Free Plates , 2010, 1004.3318.

[9]  Richard S. Laugesen,et al.  Properties of steady states for thin film equations , 1998, European Journal of Applied Mathematics.

[10]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[11]  Wolfgang Arendt,et al.  Weyl's Law: Spectral Properties of the Laplacian in Mathematics and Physics , 2009 .

[12]  Brian J. McCartin,et al.  Eigenstructure of the Equilateral Triangle, Part I: The Dirichlet Problem , 2003, SIAM Rev..

[13]  Ari Laptev,et al.  Dirichlet and Neumann Eigenvalue Problems on Domains in Euclidean Spaces , 1997 .

[14]  J. Kahane On a theorem of Pólya , 1992 .

[15]  Barry Simon,et al.  Methods of modern mathematical physics. III. Scattering theory , 1979 .

[16]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.

[17]  문정진 § 19 , 2000 .

[18]  Shing-Tung Yau,et al.  On the Schrödinger equation and the eigenvalue problem , 1983 .

[19]  L. Evans Measure theory and fine properties of functions , 1992 .

[20]  J. Powell Mathematical Methods in Physics , 1965 .

[21]  R. Laugesen,et al.  Sums of Magnetic Eigenvalues are Maximal on Rotationally Symmetric Domains , 2011, 1104.1272.

[22]  J. Keener Principles of Applied Mathematics , 2019 .

[23]  Richard S. Laugesen,et al.  Linear Stability of Steady States for Thin Film and Cahn-Hilliard Type Equations , 2000 .

[24]  Michael E. Taylor,et al.  Partial Differential Equations III , 1996 .

[25]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[26]  R. Schaaf Global Solution Branches of Two Point Boundary Value Problems , 1991 .

[27]  S. Gustafson,et al.  Mathematical Concepts of Quantum Mechanics , 2006, Universitext.

[28]  C. Bandle Isoperimetric inequalities and applications , 1980 .