The weighted least square based estimators with censoring indicators missing at random

Abstract In this paper, we study linear regression analysis when some of the censoring indicators are missing at random. We define regression calibration estimate, imputation estimate and inverse probability weighted estimate for the regression coefficient vector based on the weighted least squared approach due to Stute (1993) , and prove all the estimators are asymptotically normal. A simulation study was conducted to evaluate the finite properties of the proposed estimators, and a real data example is provided to illustrate our methods.

[1]  Els Goetghebeur,et al.  Analysis of competing risks survival data when some failure types are missing , 1995 .

[2]  D. Rubin,et al.  Statistical Analysis with Missing Data. , 1989 .

[3]  R. Snow,et al.  The burden of malaria mortality among African children in the year 2000. , 2006, International journal of epidemiology.

[4]  Changlin Mei,et al.  The Koul-Susarla-Van Ryzin and weighted least squares estimates for censored linear regression model: A comparative study , 2007, Comput. Stat. Data Anal..

[5]  Rupert G. Miller Least squares regression with censored data , 1976 .

[6]  Xian Zhou,et al.  Addititive hazards regression with missing censoring information , 2003 .

[7]  J. V. Ryzin,et al.  Regression Analysis with Randomly Right-Censored Data , 1981 .

[8]  Sundarraman Subramanian,et al.  Product‐limit Estimators and Cox Regression with Missing Censoring Information , 1998 .

[9]  D. Horvitz,et al.  A Generalization of Sampling Without Replacement from a Finite Universe , 1952 .

[10]  Winfried Stute,et al.  Consistent estimation under random censorship when covariables are present , 1993 .

[11]  I. James,et al.  Linear regression with censored data , 1979 .

[12]  Shyamal D. Peddada,et al.  Jackknife variance estimators in linear models , 1992 .

[13]  Qihua Wang,et al.  ASYMPTOTICALLY EFFICIENT PRODUCT-LIMIT ESTIMATORS WITH CENSORING INDICATORS MISSING AT RANDOM , 2008 .

[14]  Gregg E Dinse,et al.  Linear regression analysis of survival data with missing censoring indicators , 2011, Lifetime data analysis.

[15]  G. Dinse,et al.  Nonparametric estimation for partially-complete time and type of failure data. , 1982, Biometrics.

[16]  Winfried Stute,et al.  Distributional Convergence under Random Censorship when Covariables are Present , 1996 .

[17]  R. Gray,et al.  Tamoxifen versus placebo: double-blind adjuvant trial in elderly women with stage II breast cancer. , 1986, NCI monographs : a publication of the National Cancer Institute.