Online system identification in a Duffing oscillator by free energy minimisation

Online system identification is the estimation of parameters of a dynamical system, such as mass or friction coefficients, for each measurement of the input and output signals. Here, the nonlinear stochastic differential equation of a Duffing oscillator is cast to a generative model and dynamical parameters are inferred using variational message passing on a factor graph of the model. The approach is validated with an experiment on data from an electronic implementation of a Duffing oscillator. The proposed inference procedure performs as well as offline prediction error minimisation in a state-of-the-art nonlinear model.

[1]  Simo Särkkä,et al.  Bayesian Filtering and Smoothing , 2013, Institute of Mathematical Statistics textbooks.

[2]  Johan Schoukens,et al.  Three free data sets for development and benchmarking in nonlinear system identification , 2013, 2013 European Control Conference (ECC).

[3]  K. Kang,et al.  Connectivity mapping of angiotensin-PPAR interactions involved in the amelioration of non-alcoholic steatohepatitis by Telmisartan , 2019, Scientific Reports.

[4]  Andrew W. Eckford,et al.  Expectation Maximization as Message Passing - Part I: Principles and Gaussian Messages , 2009, ArXiv.

[5]  Karl J. Friston,et al.  Neuronal message passing using Mean-field, Bethe, and Marginal approximations , 2019, Scientific Reports.

[6]  Philip Holmes,et al.  A magnetoelastic strange attractor , 1979 .

[7]  Junichiro Yoshimoto,et al.  System Identification Based on Online Variational Bayes Method and Its Application to Reinforcement Learning , 2003, ICANN.

[8]  Bert de Vries,et al.  Bayesian joint state and parameter tracking in autoregressive models , 2020, L4DC.

[9]  P. L. Green Bayesian system identification of a nonlinear dynamical system using a novel variant of Simulated Annealing , 2015 .

[10]  Shie Mannor,et al.  The kernel recursive least-squares algorithm , 2004, IEEE Transactions on Signal Processing.

[11]  Chi-Sang Poon,et al.  Internal models in sensorimotor integration: perspectives from adaptive control theory , 2005, Journal of neural engineering.

[12]  Sascha Korl A factor graph approach to signal modelling, system identification and filtering , 2005 .

[13]  Justin Dauwels,et al.  On Variational Message Passing on Factor Graphs , 2007, 2007 IEEE International Symposium on Information Theory.

[14]  Simo Srkk,et al.  Bayesian Filtering and Smoothing , 2013 .

[15]  M.G.H. Cox,et al.  ForneyLab.jl: fast and flexible automated inference through message passing in Julia , 2018 .

[16]  Karl J. Friston,et al.  A free energy principle for the brain , 2006, Journal of Physiology-Paris.

[17]  Li Ping,et al.  The Factor Graph Approach to Model-Based Signal Processing , 2007, Proceedings of the IEEE.

[18]  Mark H. Johnson,et al.  Baby steps: investigating the development of perceptual–motor couplings in infancy , 2014, Developmental science.

[19]  Jacob Benesty,et al.  A Robust Variable Forgetting Factor Recursive Least-Squares Algorithm for System Identification , 2008, IEEE Signal Processing Letters.

[20]  David J. Wagg,et al.  Identification of Nonlinear Dynamical Systems Using Approximate Bayesian Computation based on a Sequential Monte Carlo Sampler , 2016 .

[21]  Bert de Vries,et al.  Online Variational Message Passing in Hierarchical Autoregressive Models , 2020, 2020 IEEE International Symposium on Information Theory (ISIT).

[22]  Karl J. Friston,et al.  Generalised free energy and active inference , 2018, Biological Cybernetics.

[23]  Luis A. Aguirre,et al.  Modeling Nonlinear Dynamics and Chaos: A Review , 2009 .

[24]  Kenji Fujimoto,et al.  System identification based on variational Bayes method and the invariance under coordinate transformations , 2011, IEEE Conference on Decision and Control and European Control Conference.

[25]  Arun K. Tangirala,et al.  Principles of System Identification , 2014 .

[26]  M.G.H. Cox,et al.  ForneyLab: a toolbox for biologically plausible free energy minimization in dynamic neural models , 2018 .

[27]  Jean-Philippe Noël,et al.  Three Benchmarks Addressing Open Challenges in Nonlinear System Identification , 2017 .

[28]  Simon McGregor,et al.  The free energy principle for action and perception: A mathematical review , 2017, 1705.09156.