Grazing-angle fiber-optic fourier transform infrared reflection-absorption spectroscopy for the in situ detection and quantification of two active pharmaceutical ingredients on glass.

Fourier transform infrared reflection-absorption spectroscopy has been used with a fiber-optic grazing-angle reflectance probe as a rapid, in situ method for trace surface analysis of acetaminophen and aspirin at loadings of approximately 0-2 microg cm(-2) on glass. Partial least-squares multivariate regression permits the loadings to be quantified, simultaneously, with root-mean-squared errors of prediction of RMSEP approximately 0.1 microg cm(-2) for both compounds. The detection limits are estimated to be LD approximately 0.2 microg cm(-2).