Fitting quadrics with a Bayesian prior

Quadrics are a compact mathematical formulation for a range of primitive surfaces. A problem arises when there are not enough data points to compute the model but knowledge of the shape is available. This paper presents a method for fitting a quadric with a Bayesian prior. We use a matrix normal prior in order to favour ellipsoids when fitting to ambiguous data. The results show the algorithm copes well when there are few points in the point cloud, competing with contemporary techniques in the area.

[1]  Mei Han,et al.  Fast Covariance Computation and Dimensionality Reduction for Sub-window Features in Images , 2010, ECCV.

[2]  Sylvain Petitjean,et al.  A survey of methods for recovering quadrics in triangle meshes , 2002, CSUR.

[3]  Horst Bunke,et al.  Comparing Curved-Surface Range Image Segmenters , 1998, ICCV.

[4]  John G. Griffiths,et al.  Least squares ellipsoid specific fitting , 2004, Geometric Modeling and Processing, 2004. Proceedings.

[5]  W. Gander,et al.  Least-squares fitting of circles and ellipses , 1994 .

[6]  Leif Kobbelt,et al.  Structure Recovery via Hybrid Variational Surface Approximation , 2005, Comput. Graph. Forum.

[7]  Kaare Brandt Petersen,et al.  The Matrix Cookbook , 2006 .

[8]  Pierre Alliez,et al.  Variational shape approximation , 2004, ACM Trans. Graph..

[9]  Carlo H. Séquin,et al.  Type-Constrained Direct Fitting of Quadric Surfaces , 2014 .

[10]  J. Flusser,et al.  Numerically Stable Direct Least Squares Fitting of Ellipses , 1998 .

[11]  Gus K. Lott Direct Orthogonal Distance to Quadratic Surfaces in 3D , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  D. Eberly Distance from a Point to an Ellipse, an Ellipsoid, or a Hyperellipsoid , 2006 .

[13]  Gabriel Taubin,et al.  Estimation of Planar Curves, Surfaces, and Nonplanar Space Curves Defined by Implicit Equations with Applications to Edge and Range Image Segmentation , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  PrattVaughan,et al.  Direct least-squares fitting of algebraic surfaces , 1987 .

[15]  G. A. Watson,et al.  A class of methods for fitting a curve or surface to data by minimizing the sum of squares of orthogonal distances , 2003 .

[16]  Marsette Vona,et al.  Curved surface contact patches with quantified uncertainty , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[17]  Bernd Hamann,et al.  Curvature Approximation for Triangulated Surfaces , 1993, Geometric Modelling.

[18]  Ralph R. Martin,et al.  Faithful Least-Squares Fitting of Spheres, Cylinders, Cones and Tori for Reliable Segmentation , 1998, ECCV.

[19]  Daniel Cohen-Or,et al.  GlobFit: consistently fitting primitives by discovering global relations , 2011, ACM Trans. Graph..

[20]  Andrew W. Fitzgibbon,et al.  Direct Least Square Fitting of Ellipses , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Hans-Jürgen Warnecke,et al.  Orthogonal Distance Fitting of Implicit Curves and Surfaces , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Dong-Ming Yan,et al.  Quadric Surface Extraction by Variational Shape Approximation , 2006, GMP.

[23]  Min Dai,et al.  Least-squares-based fitting of paraboloids , 2007, Pattern Recognit..

[24]  Angel Domingo Sappa,et al.  Implicit Polynomial Representation Through a Fast Fitting Error Estimation , 2012, IEEE Transactions on Image Processing.

[25]  Vaughan R. Pratt,et al.  Direct least-squares fitting of algebraic surfaces , 1987, SIGGRAPH.

[26]  Oscar E. Ruiz,et al.  Fitting of Analytic Surfaces to Noisy Point Clouds , 2013 .

[27]  Reinhard Klein,et al.  Efficient RANSAC for Point‐Cloud Shape Detection , 2007, Comput. Graph. Forum.

[28]  David B. Cooper,et al.  Practical Reliable Bayesian Recognition of 2D and 3D Objects Using Implicit Polynomials and Algebraic Invariants , 1996, IEEE Trans. Pattern Anal. Mach. Intell..