A hybrid modelling approach for assessing solar radiation

A hybrid technique for solar radiation estimation, a core part of hydrological cycle, is presented in this study which parameterises the cloud cover effect (cloud cover index) not just from the geostationary satellites but also the PSU/NCAR’s Mesoscale Modelling system (MM5) model. This, together with output from a global clear sky radiation model and observed datasets of temperature and precipitation are used as inputs within the Gamma test (GT) environment for the development of nonlinear models for global solar radiation estimation. The study also explores the ability of Gamma test to determine the optimum input combination and data length selection. Artificial neural network- and local linear regression-based nonlinear techniques are used to test the proposed methodology, and the results have shown a high degree of correlation between the observed and estimated values. It is believed that this study will initiate further exploration of GT for improving informed data and model selection.

[1]  J. Nazuno Haykin, Simon. Neural networks: A comprehensive foundation, Prentice Hall, Inc. Segunda Edición, 1999 , 2000 .

[2]  Philip Jennings,et al.  A method for generating synthetic hourly solar radiation data for any location in the south west of Western Australia, in a world wide web page , 2014 .

[3]  Vladimir M. Krasnopolsky,et al.  A neural network technique to improve computational efficiency of numerical oceanic models , 2002 .

[4]  Kinsell L. Coulson,et al.  Solar and Terrestrial Radiation: Methods and Measurements , 1975 .

[5]  H. M. Kandırmaz,et al.  Daily global solar radiation mapping of Turkey using Meteosat satellite data , 2004 .

[6]  Helmut Mayer,et al.  Performance of solar radiation models: a case study , 2001 .

[7]  V. Badescu Modeling Solar Radiation at the Earth’s Surface , 2008 .

[8]  Alain Chedin,et al.  A Neural Network Approach for a Fast and Accurate Computation of a Longwave Radiative Budget , 1998 .

[9]  A. Salim Bawazir,et al.  Estimating Daily Net Radiation over Vegetation Canopy through Remote Sensing and Climatic Data , 2007 .

[10]  V. Krasnopolsky,et al.  A neural network as a nonlinear transfer function model for retrieving surface wind speeds from the special sensor microwave imager , 1995 .

[11]  S. L. Abreu,et al.  Satellite-derived solar resource maps for Brazil under SWERA project , 2007 .

[12]  Philip K. Thornton,et al.  MarkSim: Software to Generate Daily Weather Data for Latin America and Africa , 2000 .

[13]  Albert Weiss,et al.  Simulation of daily solar irradiance , 2004 .

[14]  A. Lorenc,et al.  Atmospheric modelling, data assimilation and predictability. By Eugenia Kalnay. Cambridge University Press. 2003. pp. xxii + 341. ISBNs 0 521 79179 0, 0 521 79629 6. , 2003 .

[15]  R. Bird,et al.  Simplified clear sky model for direct and diffuse insolation on horizontal surfaces , 1981 .

[16]  Saleh M. Al-Alawi,et al.  An ANN-based approach for predicting global radiation in locations with no direct measurement instrumentation , 1998 .

[17]  Nai-Jia Guo,et al.  Spatiotemporal modeling of monthly soil temperature using artificial neural networks , 2013, Theoretical and Applied Climatology.

[18]  David Pozo-Vázquez,et al.  Evaluation of two MM5-PBL parameterizations for solar radiation and temperature estimation in the South-Eastern area of the Iberian Peninsula , 2009 .

[19]  Thomas K. Van Heuklon Estimating atmospheric ozone for solar radiation models , 1979 .

[20]  Holger R. Maier,et al.  The effect of internal parameters and geometry on the performance of back-propagation neural networks: an empirical study , 1998 .

[21]  R. L. Hulstrom,et al.  Direct insolation models , 1980 .

[22]  Mohammad Karamouz,et al.  Input data selection for solar radiation estimation , 2009 .

[23]  Dawei Han,et al.  Rainfall-runoff modelling using a wavelet-based hybrid SVM scheme. , 2009 .

[24]  R. E. Bird,et al.  Review, Evaluation, and Improvement of Direct Irradiance Models , 1981 .

[25]  Brian A. Colle,et al.  MM5 precipitation verification over the pacific northwest during the 1997-99 cool seasons , 2000 .

[26]  T. M. Williams,et al.  Practical Methods of Optimization. Vol. 1: Unconstrained Optimization , 1980 .

[27]  D. Chalikov,et al.  New Approach to Calculation of Atmospheric Model Physics: Accurate and Fast Neural Network Emulation of Longwave Radiation in a Climate Model , 2005 .

[28]  A. P. M. Tsui Smooth data modelling and stimulus-response via stabilisation of neural chaos , 1999 .

[29]  C. W. Richardson Weather simulation for crop management models , 1985 .

[30]  C. Schillings,et al.  Operational method for deriving high resolution direct normal irradiance from satellite data , 2004 .

[31]  A. Rahimikhoob Estimating sunshine duration from other climatic data by artificial neural network for ET0 estimation in an arid environment , 2014, Theoretical and Applied Climatology.

[32]  Antonia J. Jones,et al.  Feature selection for genetic sequence classification , 1998, Bioinform..

[33]  M. Iqbal An introduction to solar radiation , 1983 .

[34]  Toshio Koike,et al.  A general model to estimate hourly and daily solar radiation for hydrological studies , 2005 .

[35]  M. Ghorbani,et al.  Relative importance of parameters affecting wind speed prediction using artificial neural networks , 2013, Theoretical and Applied Climatology.

[36]  Syed Zishan Ashiq,et al.  Predicting streamflows to a multipurpose reservoir using artificial neural networks and regression techniques , 2015, Earth Science Informatics.

[37]  H. Guillard,et al.  A method for the determination of the global solar radiation from meteorological satellite data , 1986 .

[38]  M. Nunez,et al.  Development of a method for generating operational solar radiation maps from satellite data for a tropical environment , 2005 .

[39]  A. Sterl,et al.  The ERA‐40 re‐analysis , 2005 .

[40]  J. Hansen,et al.  A parameterization for the absorption of solar radiation in the earth's atmosphere , 1974 .

[41]  Z. Samani,et al.  Estimating Potential Evapotranspiration , 1982 .

[42]  B. Rappenglück,et al.  MM5 v3.6.1 and WRF v3.2.1 model comparison of standard and surface energy variables in the development of the planetary boundary layer , 2014 .

[43]  A. Angstroem Solar and terrestrial radiation , 1924 .

[44]  J. A. Ruiz-Arias,et al.  Comparison of numerical weather prediction solar irradiance forecasts in the US, Canada and Europe , 2013 .

[45]  Lahouari Bounoua,et al.  An Introduction to Numerical Weather Prediction Techniques , 1996 .

[46]  Laurene V. Fausett,et al.  Fundamentals Of Neural Networks , 1993 .

[47]  Dawei Han,et al.  Estimating reference evapotranspiration using numerical weather modelling , 2010 .

[48]  M. A. Shamim,et al.  Forecasting Groundwater Contamination Using Artificial Neural Networks , 2004 .

[49]  J. Orbach Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms. , 1962 .

[50]  Toshio Koike,et al.  ESTIMATING SURFACE SOLAR RADIATION FROM UPPER-AIR HUMIDITY , 2002 .

[51]  B. Psiloglou,et al.  The Meteorological Radiation Model (MRM): Advancements and Applications , 2008 .

[52]  A. J. Jones,et al.  A proof of the Gamma test , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[53]  A. Angstrom Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation , 2007 .

[54]  Hosni Ghedira,et al.  Mapping of the Solar Irradiance in the UAE Using Advanced Artificial Neural Network Ensemble , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[55]  Nenad Koncar,et al.  A note on the Gamma test , 1997, Neural Computing & Applications.

[56]  Dawei Han,et al.  Effect of Data Time Interval on Real-time Flood Forecasting , 2010 .

[57]  G. Campbell,et al.  On the relationship between incoming solar radiation and daily maximum and minimum temperature , 1984 .

[58]  Terrence L. Fine,et al.  Feedforward Neural Network Methodology , 1999, Information Science and Statistics.

[59]  B. Rappenglück,et al.  MM5 v3.6.1 and WRF v3.5.1 model comparison of standard and surface energy variables in the development of the planetary boundary layer , 2014 .

[60]  Ozgur Kisi,et al.  Applications of hybrid wavelet–Artificial Intelligence models in hydrology: A review , 2014 .

[61]  Contour maps for sunshine ratio for Oman using radial basis function generated data , 2003 .

[62]  Jesús Polo,et al.  Solar Radiation Derived from Satellite Images , 2008 .

[63]  Robert W. Pasken,et al.  Using dispersion and mesoscale meteorological models to forecast pollen concentrations , 2005 .

[64]  D. A. Ronzio,et al.  A survey on different radiative and cloud schemes for the solar radiation modeling , 2013 .

[65]  M. A. Shamim,et al.  An improved technique for global daily sunshine duration estimation using satellite imagery , 2012, Journal of Zhejiang University SCIENCE A.

[66]  Antonia J. Jones,et al.  New tools in non-linear modelling and prediction , 2004, Comput. Manag. Sci..

[67]  Frédéric Chevallier,et al.  Use of a neural‐network‐based long‐wave radiative‐transfer scheme in the ECMWF atmospheric model , 2000 .

[68]  P. Ineichen,et al.  Producing satellite-derived irradiances in complex arid terrain , 2004 .

[69]  E. Lorenz,et al.  Forecasting Solar Radiation , 2021, Journal of Cases on Information Technology.

[70]  Nobuyuki Tamai,et al.  A hybrid model for estimating global solar radiation , 2001 .

[71]  Dafydd Evans Data-derived estimates of noise for unknown smooth models using near-neighbour asymptotics , 2002 .

[72]  G. N. Tiwari,et al.  Solar Energy: Fundamentals, Design, Modelling and Applications , 2002 .

[73]  P. Ineichen,et al.  A new operational model for satellite-derived irradiances: description and validation , 2002 .

[74]  James M. Wilczak,et al.  The Accuracy of Solar Irradiance Calculations Used in Mesoscale Numerical Weather Prediction , 2005 .

[75]  Antonia J. Jones,et al.  Neural models of arbitrary chaotic systems: construction and the role of time delayed feedback in control and synchronization , 2001 .

[76]  Vincenzo Cena,et al.  Stochastic simulation of hourly global radiation sequences , 1979 .

[77]  R. McClendon,et al.  Estimation of Solar Radiation Data Missing from Long-Term Meteorological Records , 1992 .

[78]  D. W. Stewart,et al.  Estimating global solar radiation from common meteorological observations in western Canada , 1993 .

[79]  Dawei Han,et al.  Closure to "Daily Pan Evaporation Modeling in a Hot and Dry Climate" , 2009 .

[80]  B. Psiloglou,et al.  On broadband Rayleigh scattering in the atmosphere for solar radiation modelling , 1995 .

[81]  Jimson Mathew,et al.  Runoff prediction using an integrated hybrid modelling scheme , 2009 .

[82]  Gianni Bellocchi,et al.  A software component for estimating solar radiation , 2006, Environ. Model. Softw..

[83]  Gianni Bellocchi,et al.  RadEst3.00: software to estimate daily radiation data from commonly available meteorological variables , 2003 .

[84]  Ali Reza Sepaskhah,et al.  Annual precipitation forecast for west, southwest, and south provinces of Iran using artificial neural networks , 2012, Theoretical and Applied Climatology.

[85]  J. Mubiru,et al.  Estimation of monthly average daily global solar irradiation using artificial neural networks , 2008 .

[86]  Dawei Han,et al.  Model data selection using gamma test for daily solar radiation estimation , 2008 .

[87]  Helmut Schiller,et al.  Some neural network applications in environmental sciences. Part I: forward and inverse problems in geophysical remote measurements , 2003, Neural Networks.

[88]  P. S. Brown,et al.  Numerical Computations of the Latitudinal Variation of Solar Radiation for an Atmosphere of Varying Opacity , 1974 .

[89]  Jamshid Piri,et al.  Comparison of LLR, MLP, Elman, NNARX and ANFIS Models―with a case study in solar radiation estimation , 2009 .

[90]  Antonia J. Jones,et al.  The Construction of Smooth Models using Irregular Embeddings Determined by a Gamma Test Analysis , 2002, Neural Computing & Applications.

[91]  Dawei Han,et al.  Flood forecasting using support vector machines , 2007 .

[92]  J. Nash,et al.  River flow forecasting through conceptual models part I — A discussion of principles☆ , 1970 .

[93]  Jimson Mathew,et al.  ANFIS and NNARX based rainfall-runoff modeling , 2008, 2008 IEEE International Conference on Systems, Man and Cybernetics.

[94]  I. T. Toğrul,et al.  A study for estimating solar radiation in Elaziğ using geographical and meteorological data , 1999 .

[95]  L. S. Pereira,et al.  Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .

[96]  De Li Liu,et al.  Estimation of solar radiation in Australia from rainfall and temperature observations , 2001 .

[97]  H. M. Kandırmaz A model for the estimation of the daily global sunshine duration from meteorological geostationary satellite data , 2006 .

[98]  Ozgur Kisi,et al.  Estimation of dew point temperature using neuro-fuzzy and neural network techniques , 2013, Theoretical and Applied Climatology.

[99]  R. Penrose A Generalized inverse for matrices , 1955 .

[100]  Bo G Leckner,et al.  The spectral distribution of solar radiation at the earth's surface—elements of a model , 1978 .

[101]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[102]  I. Dincer,et al.  A simple technique for estimating solar radiation parameters and its application for Gebze , 1996 .

[103]  D. Gong,et al.  Mechanism on how the spring Arctic sea ice impacts the East Asian summer monsoon , 2014, Theoretical and Applied Climatology.

[104]  M. A. Shamim,et al.  Global Sunshine Duration Estimation on a daily basis using Geostationary Satellite Imagery , 2009 .

[105]  Viorel Badescu,et al.  Preliminary Wrf-Arw Model Analysis of Global Solar Irradiation Forecasting , 2014 .

[106]  P. Bates,et al.  Rainfall uncertainty for extreme events in NWP downscaling model , 2011 .

[107]  J. Seibert,et al.  Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods , 2012 .

[108]  Özgür Kisi,et al.  Precipitation forecasting by using wavelet-support vector machine conjunction model , 2012, Eng. Appl. Artif. Intell..

[109]  Dawei Han,et al.  Evaporation Estimation Using Artificial Neural Networks and Adaptive Neuro-Fuzzy Inference System Techniques , 2009 .

[110]  Dawei Han,et al.  Solar radiation estimation in ungauged catchments , 2010 .

[111]  Adel Mellit,et al.  Artificial Intelligence technique for modelling and forecasting of solar radiation data: a review , 2008, Int. J. Artif. Intell. Soft Comput..

[112]  G. Grell,et al.  A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5) , 1994 .

[113]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[114]  H. Beyer,et al.  Solar energy assessment using remote sensing technologies , 2003 .

[115]  V. M. Krasnopolsky,et al.  A multi-parameter empirical ocean algorithm for SSM/I retrievals , 1999 .

[116]  Suri Marcel,et al.  Solar Energy Resource Management for Electricity Generation from Local Level to Global Scale , 2006 .

[117]  R. Perez,et al.  Analysis of satellite derived beam and global solar radiation data , 2007 .