Realizing exceptional points of any order in the presence of symmetry

Exceptional points (EPs) appear as degeneracies in the spectrum of non-Hermitian matrices at which the eigenvectors coalesce. In general, an EP of order n may find room to emerge if 2( n − 1) real constraints are imposed. Our results show that these constraints can be expressed in terms of the determinant and traces of the non-Hermitian matrix. Our findings further reveal that the total number of constraints may reduce in the presence of unitary and antiunitary symmetries. Additionally, we draw generic conclusions for the low-energy dispersion of the EPs. Based on our calculations, we show that in odd dimensions the presence of sublattice or pseudo-chiral symmetry enforces n th order EPs to disperse with the ( n − 1)th root. For two-, three- and four-band systems, we explicitly present the constraints needed for the occurrence of EPs in terms of system parameters and classify EPs based on their low-energy dispersion relations. we present a case study in the following. We start with a traceless non-Hermitian four-band

[1]  Y. Hatsugai,et al.  Discriminant indicators with generalized inversion symmetry , 2021, Physical Review B.

[2]  F. Capolino,et al.  Experimental demonstration of exceptional points of degeneracy in linear time periodic systems and exceptional sensitivity , 2019, Journal of Applied Physics.

[3]  Xiaoming Zhang,et al.  Triple degenerate point in three dimensions: Theory and realization , 2021, Physical Review B.

[4]  Xiaoming Zhang,et al.  Sixfold, fourfold, and threefold excitations in the rare-earth metal carbide R2C3 , 2021, Physical Review B.

[5]  E. Bergholtz,et al.  Classification of exceptional nodal topologies protected by PT symmetry , 2021, Physical Review B.

[6]  E. Bergholtz,et al.  Symmetry and Higher-Order Exceptional Points. , 2021, Physical review letters.

[7]  Jiangping Hu,et al.  Fermion Doubling Theorems in Two-Dimensional Non-Hermitian Systems for Fermi Points and Exceptional Points. , 2021, Physical review letters.

[8]  Wei Zhang,et al.  Experimental Determination of PT-Symmetric Exceptional Points in a Single Trapped Ion. , 2021, Physical review letters.

[9]  A. Grushin,et al.  Entanglement spectrum crossings reveal non-Hermitian dynamical topology , 2020, Physical Review Research.

[10]  Jan Carl Budich,et al.  Exceptional topology of non-Hermitian systems , 2019, 1912.10048.

[11]  Y. Hatsugai,et al.  Symmetry-protected higher-order exceptional points and their topological characterization , 2021 .

[12]  J. Wiersig Review of exceptional point-based sensors , 2020 .

[13]  L. Ge,et al.  Pseudochirality: A Manifestation of Noether's Theorem in Non-Hermitian Systems. , 2020, Physical review letters.

[14]  Shengyuan A. Yang,et al.  Higher-order Dirac fermions in three dimensions , 2019, Physical Review B.

[15]  D. Christodoulides,et al.  Experimental Observation of PT Symmetry Breaking near Divergent Exceptional Points. , 2019, Physical review letters.

[16]  Shu Chen,et al.  Topological classification of defects in non-Hermitian systems , 2019, Physical Review B.

[17]  K. Kawabata,et al.  Classification of Exceptional Points and Non-Hermitian Topological Semimetals. , 2019, Physical review letters.

[18]  M. Miri,et al.  Exceptional points in optics and photonics , 2019, Science.

[19]  Flore K. Kunst,et al.  Non-Hermitian systems and topology: A transfer-matrix perspective , 2018, Physical Review B.

[20]  T. Yokoyama,et al.  Topological exceptional surfaces in non-Hermitian systems with parity-time and parity-particle-hole symmetries , 2018, Physical Review B.

[21]  Flore K. Kunst,et al.  Symmetry-protected nodal phases in non-Hermitian systems , 2018, Physical Review B.

[22]  Shengyuan A. Yang,et al.  Quadratic and cubic nodal lines stabilized by crystalline symmetry , 2018, Physical Review B.

[23]  Hui Jing,et al.  Optomechanically Induced Transparency at Exceptional Points , 2018, Physical Review Applied.

[24]  E. Bergholtz,et al.  Exceptional links and twisted Fermi ribbons in non-Hermitian systems , 2018, Physical Review A.

[25]  C. Yuce Stable topological edge states in a non-Hermitian four-band model , 2018, Physical Review A.

[26]  F. Flicker,et al.  Chiral optical response of multifold fermions , 2018, Physical Review B.

[27]  Jan Carl Budich,et al.  Biorthogonal Bulk-Boundary Correspondence in Non-Hermitian Systems. , 2018, Physical review letters.

[28]  Hsin Lin,et al.  Nonsymmorphic cubic Dirac point and crossed nodal rings across the ferroelectric phase transition in LiOsO$_3$ , 2018, 1804.09389.

[29]  F. Song,et al.  Non-Hermitian Chern Bands. , 2018, Physical review letters.

[30]  B. Everitt Galois Theory - a first course , 2018, 1804.04657.

[31]  Zhong Wang,et al.  Edge States and Topological Invariants of Non-Hermitian Systems. , 2018, Physical review letters.

[32]  R. Lu,et al.  Geometrical meaning of winding number and its characterization of topological phases in one-dimensional chiral non-Hermitian systems , 2018, 1802.04169.

[33]  E. J. Mele,et al.  Weyl and Dirac semimetals in three-dimensional solids , 2017, 1705.01111.

[34]  S. Longhi,et al.  Unidirectional lasing in semiconductor microring lasers at an exceptional point [Invited] , 2017 .

[35]  Shanhui Fan,et al.  Unidirectional reflectionless light propagation at exceptional points , 2017 .

[36]  Tony E. Lee,et al.  Anomalous Edge State in a Non-Hermitian Lattice. , 2016, Physical review letters.

[37]  Hsin Lin,et al.  Colloquium : Topological band theory , 2016, 1603.03576.

[38]  Barry Bradlyn,et al.  Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals , 2016, Science.

[39]  H. Weng,et al.  Node-surface and node-line fermions from nonsymmorphic lattice symmetries , 2016, 1601.01440.

[40]  Shinsei Ryu,et al.  Classification of topological quantum matter with symmetries , 2015, 1505.03535.

[41]  T. Senthil,et al.  Symmetry Protected Topological phases of Quantum Matter , 2014, 1405.4015.

[42]  A. Schnyder,et al.  Classification of reflection-symmetry-protected topological semimetals and nodal superconductors , 2014, 1408.4642.

[43]  V. Galitski,et al.  SU(3) spin-orbit coupling in systems of ultracold atoms. , 2012, Physical review letters.

[44]  Yan Sun,et al.  Dirac semimetal and topological phase transitions in A 3 Bi ( A = Na , K, Rb) , 2012, 1202.5636.

[45]  Xi Dai,et al.  Multi-Weyl topological semimetals stabilized by point group symmetry. , 2011, Physical review letters.

[46]  C. Kane,et al.  Dirac semimetal in three dimensions. , 2011, Physical review letters.

[47]  E. Graefe,et al.  Signatures of three coalescing eigenfunctions , 2011, 1110.1489.

[48]  L. Balents,et al.  Topological nodal semimetals , 2011, 1110.1089.

[49]  M. Overton,et al.  Stable perturbations of nonsymmetric matrices , 2011 .

[50]  M. Kohmoto,et al.  Edge states and topological phases in non-Hermitian systems , 2011, 1107.2079.

[51]  Xi Dai,et al.  Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. , 2011, Physical review letters.

[52]  Ashvin Vishwanath,et al.  Subject Areas : Strongly Correlated Materials A Viewpoint on : Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates , 2011 .

[53]  M. Berry Physics of Nonhermitian Degeneracies , 2004 .

[54]  A. Mostafazadeh Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian , 2001, math-ph/0107001.

[55]  H. Harney,et al.  Experimental observation of the topological structure of exceptional points. , 2001, Physical review letters.

[56]  Alan Edelman,et al.  Nongeneric Eigenvalue Perturbations of Jordan Blocks , 1998 .

[57]  C. Bender,et al.  Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.

[58]  M. Overton,et al.  On the Lidskii-Vishik-Lyusternik Perturbation Theory for Eigenvalues of Matrices with Arbitrary Jordan Structure , 1997, SIAM J. Matrix Anal. Appl..

[59]  A. Altland,et al.  Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures , 1996, cond-mat/9602137.

[60]  V. Arnold ON MATRICES DEPENDING ON PARAMETERS , 1971 .

[61]  V. Lidskii Perturbation theory of non-conjugate operators , 1966 .

[62]  Louis Brand,et al.  The Companion Matrix and Its Properties , 1964 .

[63]  R. Tennant Algebra , 1941, Nature.