Comparative Analysis of Microbial Profiles in Cow Rumen Fed with Different Dietary Fiber by Tagged 16S rRNA Gene Pyrosequencing

[1]  S. Tangphatsornruang,et al.  Comparative Analysis of Microbial Profiles in Cow Rumen Fed with Different Dietary Fiber by Tagged 16S rRNA Gene Pyrosequencing , 2013, Current Microbiology.

[2]  J. Edwards,et al.  Shifts in the rumen microbiota due to the type of carbohydrate and level of protein ingested by dairy cattle are associated with changes in rumen fermentation. , 2012, The Journal of nutrition.

[3]  Eugene L. Madsen,et al.  Comparative Survey of Rumen Microbial Communities and Metabolites across One Caprine and Three Bovine Groups, Using Bar-Coded Pyrosequencing and 1H Nuclear Magnetic Resonance Spectroscopy , 2012, Applied and Environmental Microbiology.

[4]  I. Mizrahi,et al.  Composition and Similarity of Bovine Rumen Microbiota across Individual Animals , 2012, PloS one.

[5]  M. Morotomi,et al.  Description of Christensenella minuta gen. nov., sp. nov., isolated from human faeces, which forms a distinct branch in the order Clostridiales, and proposal of Christensenellaceae fam. nov. , 2012, International journal of systematic and evolutionary microbiology.

[6]  C. Abbas,et al.  Biochemical Characterization and Relative Expression Levels of Multiple Carbohydrate Esterases of the Xylanolytic Rumen Bacterium Prevotella ruminicola 23 Grown on an Ester-Enriched Substrate , 2011, Applied and Environmental Microbiology.

[7]  Rob Knight,et al.  UCHIME improves sensitivity and speed of chimera detection , 2011, Bioinform..

[8]  S. Tringe,et al.  Metagenomic Discovery of Biomass-Degrading Genes and Genomes from Cow Rumen , 2011, Science.

[9]  E. Zoetendal,et al.  Microarray Analysis and Barcoded Pyrosequencing Provide Consistent Microbial Profiles Depending on the Source of Human Intestinal Samples , 2011, Applied and Environmental Microbiology.

[10]  P J Kononoff,et al.  Evaluation of bacterial diversity in the rumen and feces of cattle fed different levels of dried distillers grains plus solubles using bacterial tag-encoded FLX amplicon pyrosequencing. , 2010, Journal of animal science.

[11]  C. Hart,et al.  Characterization of Novel Bovine Gastrointestinal Tract Treponema Isolates and Comparison with Bovine Digital Dermatitis Treponemes , 2010, Applied and Environmental Microbiology.

[12]  B. Roe,et al.  Rumen Microbial Population Dynamics during Adaptation to a High-Grain Diet , 2010, Applied and Environmental Microbiology.

[13]  Eunseog Youn,et al.  Rumen Bacterial Diversity Dynamics Associated with Changing from Bermudagrass Hay to Grazed Winter Wheat Diets , 2010, Microbial Ecology.

[14]  Orianna Bretschger,et al.  Microbial Fuel Cells and Microbial Ecology: Applications in Ruminant Health and Production Research , 2009, Microbial Ecology.

[15]  Martin Hartmann,et al.  Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities , 2009, Applied and Environmental Microbiology.

[16]  F. Martin,et al.  454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. , 2009, The New phytologist.

[17]  J. Guyot,et al.  Pyrosequencing of Tagged 16S rRNA Gene Amplicons for Rapid Deciphering of the Microbiomes of Fermented Foods Such as Pearl Millet Slurries , 2009, Applied and Environmental Microbiology.

[18]  E Kebreab,et al.  Recent advances in modeling nutrient utilization in ruminants. , 2009, Journal of animal science.

[19]  R. Knight,et al.  A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses , 2009, The ISME Journal.

[20]  A. Fodor,et al.  Molecular Diversity of a North Carolina Wastewater Treatment Plant as Revealed by Pyrosequencing , 2008, Applied and Environmental Microbiology.

[21]  E. Zoetendal,et al.  High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota , 2008, Gut.

[22]  Anders F. Andersson,et al.  Comparative Analysis of Human Gut Microbiota by Barcoded Pyrosequencing , 2008, PloS one.

[23]  Yan Sun,et al.  Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) , 2008, BMC Microbiology.

[24]  M. Domingo,et al.  Ruminococcus gauvreauii sp. nov., a glycopeptide-resistant species isolated from a human faecal specimen. , 2008, International journal of systematic and evolutionary microbiology.

[25]  Peter H. Janssen,et al.  Structure of the Archaeal Community of the Rumen , 2008, Applied and Environmental Microbiology.

[26]  M. Dumont,et al.  Anaerobic Consumers of Monosaccharides in a Moderately Acidic Fen , 2008, Applied and Environmental Microbiology.

[27]  U. Stenzel,et al.  Parallel tagged sequencing on the 454 platform , 2008, Nature Protocols.

[28]  M. Nei,et al.  MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. , 2007, Molecular biology and evolution.

[29]  J. Tiedje,et al.  Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy , 2007, Applied and Environmental Microbiology.

[30]  D. Kamra Rumen microbial ecosystem , 2005 .

[31]  C. Chou,et al.  Structures of Selenomonas ruminantium phytase in complex with persulfated phytate: DSP phytase fold and mechanism for sequential substrate hydrolysis. , 2004, Structure.

[32]  A. Travis,et al.  16S rDNA library-based analysis of ruminal bacterial diversity , 2004, Antonie van Leeuwenhoek.

[33]  Jared R. Leadbetter,et al.  Description of Treponema azotonutricium sp. nov. and Treponema primitia sp. nov., the First Spirochetes Isolated from Termite Guts , 2004, Applied and Environmental Microbiology.

[34]  R. Mackie,et al.  Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. , 2003, FEMS microbiology reviews.

[35]  D. Cowan,et al.  Review and re-analysis of domain-specific 16S primers. , 2003, Journal of microbiological methods.

[36]  K. Jones,et al.  Cattle and sheep farms as reservoirs of Campylobacter , 2003, Journal of applied microbiology.

[37]  J. Mrázek,et al.  Butyrivibrio hungatei sp. nov. and Pseudobutyrivibrio xylanivorans sp. nov., butyrate-producing bacteria from the rumen. , 2003, International journal of systematic and evolutionary microbiology.

[38]  Y. Benno,et al.  Diet-Dependent Shifts in the Bacterial Population of the Rumen Revealed with Real-Time PCR , 2001, Applied and Environmental Microbiology.

[39]  M. Peterka,et al.  Unravelling the genetic diversity of ruminal bacteria belonging to the CFB phylum. , 2000, FEMS microbiology ecology.

[40]  Y. Benno,et al.  Phenotypic Characterization of Polysaccharidases Produced by Four Prevotella Type Strains , 2000, Current Microbiology.

[41]  Y. Benno,et al.  Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries , 1999 .

[42]  J. Lou,et al.  Glycogen biosynthesis via UDP-glucose in the ruminal bacterium Prevotella bryantii B1(4) , 1997, Applied and environmental microbiology.