The Santa Barbara Cluster Comparison Project: A Comparison of Cosmological Hydrodynamics Solutions
暂无分享,去创建一个
M. Steinmetz | M. Steinmetz | J. Bond | A. Evrard | S. White | J. Owen | J. Villumsen | C. Frenk | R. Cen | F. Pearce | G. Bryan | J. Navarro | Guohong Xu | M. Norman | J. Wadsley | A. Jenkins | P. Thomas | H. Couchman | A. Klypin | M. Warren | A. Khokhlov | U. Pen | G. Yepes | J. Ostriker | N. Gnedin | G. Xu | P. Bode | A. Klypin | G. Yepes | N. Gnedin | G. Xu | A. Jenkins | J. R. Bond | P. Bode | C. S. Frenk | S. D. M. White | G. L. Bryan | R. Cen | H. M. P. Couchman | A. E. Evrard | N. Gnedin | A. M. Khokhlov | J. F. Navarro | M. L. Norman | J. P. Ostriker | J. M. Owen | F. R. Pearce | U.‐L. Pen | P. A. Thomas | J. V. Villumsen | J. W. Wadsley | M. S. Warren | S. White | M. Norman | J. Bond
[1] E. Ribak,et al. Constrained realizations of Gaussian fields : a simple algorithm , 1991 .
[2] F. Pearce,et al. Hydra: An Adaptive--Mesh Implementation of PPPM--SPH , 1994, astro-ph/9409058.
[3] J. W. Eastwood,et al. On the clustering of particles in an expanding Universe , 1981 .
[4] Michael L. Norman,et al. X-ray clusters from a high-resolution hydrodynamic PPM simulation of the cold dark matter universe , 1994 .
[5] H.M.P. Couchman,et al. Hydra: a parallel adaptive grid code , 1997 .
[6] J. Monaghan,et al. Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .
[7] A. Evrard. Formation and Evolution of X-Ray Clusters: A Hydrodynamic Simulation of the Intracluster Medium , 1990 .
[8] Ue-Li Pen,et al. A High-Resolution Adaptive Moving Mesh Hydrodynamic Algorithm , 1997, astro-ph/9704258.
[9] Michael S. Warren,et al. A portable parallel particle program , 1995 .
[10] S. White,et al. Simulations of dissipative galaxy formation in hierarchically clustering universes – II. Dynamics of the baryonic component in galactic haloes , 1994 .
[11] Jeremiah P. Ostriker,et al. A piecewise parabolic method for cosmological hydrodynamics , 1995 .
[12] J. Mohr,et al. An X-Ray Size-Temperature Relation for Galaxy Clusters: Observation and Simulation , 1997, astro-ph/9707184.
[13] Jeremiah P. Ostriker,et al. The universe in a box : thermal effects in the standard cold dark matter scenario , 1990 .
[14] A. Szalay,et al. The statistics of peaks of Gaussian random fields , 1986 .
[15] Building a Cosmological Hydrodynamic Code: Consistency Condition, Moving Mesh Gravity, and SLH-P 3M , 1996, astro-ph/9602063.
[16] Jeremiah P. Ostriker,et al. A Cosmological Hydrodynamic Code Based on the Total Variation Diminishing Scheme , 1993 .
[17] A. Evrard. Beyond N-body: 3D cosmological gas dynamics , 1988 .
[18] S. White,et al. A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.
[19] A. Evrard,et al. The baryon content of galaxy clusters: a challenge to cosmological orthodoxy , 1993, Nature.
[20] J. Owen,et al. Adaptive Smoothed Particle Hydrodynamics: Methodology. II. , 1995, astro-ph/9512078.
[21] P. Coles,et al. Mapping, measuring, and modelling the universe , 1996 .
[22] J. Bond,et al. COBE Background radiation anisotropies and large scale structure in the universe , 1992 .
[23] Nickolay Y. Gnedin,et al. Softened Lagrangian Hydrodynamics for Cosmology , 1995 .
[24] X-ray clusters in a cold dark matter + lambda universe: A direct, large-scale, high-resolution, hydrodynamic simulation , 1994, astro-ph/9404012.
[25] Diego Sáez,et al. New Insights into the Universe , 1992 .
[26] D. Balsara. von Neumann stability analysis of smoothed particle hydrodynamics—suggestions for optimal algorithms , 1995 .
[27] Elaine S. Oran,et al. Numerical Simulation of Reactive Flow , 1987 .
[28] Matthias Steinmetz,et al. A Comparison of X-ray and Strong Lensing Properties of Simulated X-ray Clusters , 1996 .
[29] P. Colella,et al. Local adaptive mesh refinement for shock hydrodynamics , 1989 .
[30] L. Lucy. A numerical approach to the testing of the fission hypothesis. , 1977 .
[31] M. Steinmetz. Grapesph: cosmological smoothed particle hydrodynamics simulations with the special-purpose hardware GRAPE , 1995, astro-ph/9504050.
[32] J. Silk,et al. Cosmology and large scale structure , 1996 .
[33] E. Bertschinger. Self-similar secondary infall and accretion in an Einstein-de Sitter universe , 1985 .
[34] J. Boris,et al. Flux-corrected transport. III. Minimal-error FCT algorithms , 1976 .
[35] J. Michael Owen,et al. Adaptive smoothed particle hydrodynamics, with application to cosmology: Methodology , 1996 .
[36] J. Bond,et al. The Peak-Patch Picture of Cosmic Catalogs. I. Algorithms , 1996 .
[37] M. Norman,et al. Hierarchical Numerical Cosmology with Hydrodynamics: Resolving X-Ray Clusters , 1996 .
[38] Toshikazu Ebisuzaki,et al. A special-purpose computer for gravitational many-body problems , 1990, Nature.
[39] U. Pen. A Linear Moving Adaptive Particle-Mesh N-Body Algorithm , 1995 .
[40] Michael S. Warren,et al. A parallel hashed oct-tree N-body algorithm , 1993, Supercomputing '93. Proceedings.
[41] S. White,et al. Simulations of X-ray clusters , 1994, astro-ph/9408069.
[42] A. Evrard,et al. A comparison of cosmological hydrodynamic codes , 1994, astro-ph/9404014.
[43] R. Cen. A hydrodynamic approach to cosmology - Methodology , 1992 .
[44] Jay P. Boris,et al. Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works , 1973 .
[45] R. Cen,et al. Hot gas in the cold dark matter scenario: X-ray clusters from a high-resolution numerical simulation , 1994, astro-ph/9404013.