Deep-learning electromagnetic monitoring coupled to fluid flow simulators

[1]  G. E. Archie,et al.  Classification of Carbonate Reservoir Rocks and Petrophysical Considerations , 1952 .

[2]  A. Abubakar,et al.  Reservoir property mapping and monitoring from joint inversion of time-lapse seismic, electromagnetic, and production data , 2016 .

[3]  Christopher M. Bishop,et al.  Current address: Microsoft Research, , 2022 .

[4]  Guangyou Fang,et al.  Application of supervised descent method for transient EM data inversion , 2018, SEG Technical Program Expanded Abstracts 2018.

[5]  Rita Streich,et al.  Controlled-Source Electromagnetic Approaches for Hydrocarbon Exploration and Monitoring on Land , 2015, Surveys in Geophysics.

[6]  Oliver Ritter,et al.  Controlled‐source electromagnetic monitoring of reservoir oil saturation using a novel borehole‐to‐surface configuration , 2015 .

[7]  Weichang Li,et al.  Classifying geological structure elements from seismic images using deep learning , 2018, SEG Technical Program Expanded Abstracts 2018.

[8]  Larry S.K. Fung,et al.  A Next-Generation Parallel Reservoir Simulator for Giant Reservoirs , 2009 .

[9]  Jianwei Ma,et al.  Velocity model building with a modified fully convolutional network , 2018, SEG Technical Program Expanded Abstracts 2018.

[10]  Amir Adler,et al.  Deep-learning tomography , 2018 .

[11]  Jocelyn Sietsma,et al.  Creating artificial neural networks that generalize , 1991, Neural Networks.

[12]  H. F. Morrison,et al.  Crosswell electromagnetic tomography: System design considerations and field results , 1995 .

[13]  Thomas Brox,et al.  Discriminative Unsupervised Feature Learning with Convolutional Neural Networks , 2014, NIPS.

[14]  D. Colombo,et al.  Application of pattern recognition techniques to long-term earthquake prediction in central Costa Rica , 1997 .

[15]  Ethem Alpaydin,et al.  Introduction to machine learning , 2004, Adaptive computation and machine learning.

[16]  D. Colombo,et al.  Surface to borehole CSEM for waterflood monitoring in Saudi Arabia: Data analysis , 2018, SEG Technical Program Expanded Abstracts 2018.

[17]  Saleh B. AlRuwaili,et al.  Crosswell Electromagnetic Tomography: from Resistivity Mapping to Interwell Fluid Distribution , 2008 .

[18]  3D inversion of surface to borehole CSEM for waterflood monitoring , 2018, SEG Technical Program Expanded Abstracts 2018.

[19]  Zhanxiang He,et al.  Mapping Reservoir Boundary By Using Borehole-Surface TFEM Technique: Two Case Studies , 2004 .

[20]  G. AlRegib,et al.  Multi-attribute k-means clustering for salt-boundary delineation from three-dimensional seismic data , 2018, Geophysical Journal International.

[21]  Yuji Kim,et al.  Geophysical inversion versus machine learning in inverse problems , 2018, The Leading Edge.

[22]  Daniele Colombo,et al.  Quantifying surface-to-reservoir electromagnetics for waterflood monitoring in a Saudi Arabian carbonate reservoir , 2013 .

[23]  Antti Oulasvirta,et al.  Computer Vision – ECCV 2006 , 2006, Lecture Notes in Computer Science.

[24]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[25]  Ming Yang,et al.  3D Convolutional Neural Networks for Human Action Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Ricardo Vilalta,et al.  Supervised Learning to Detect Salt Body , 2015 .

[27]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[28]  Daeung Yoon,et al.  Salt Delineation From Electromagnetic Data Using Convolutional Neural Networks , 2019, IEEE Geoscience and Remote Sensing Letters.

[29]  Michael Commer,et al.  New advances in three‐dimensional controlled‐source electromagnetic inversion , 2007 .

[31]  Aria Abubakar,et al.  Inversion algorithms for large-scale geophysical electromagnetic measurements , 2009 .

[32]  Jonas Adler,et al.  Solving ill-posed inverse problems using iterative deep neural networks , 2017, ArXiv.

[33]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[34]  V. Puzyrev,et al.  Three-Dimensional Modeling of the Casing Effect in Onshore Controlled-Source Electromagnetic Surveys , 2017, Surveys in Geophysics.