The Electron and ion Plasma Experiment for Fast

The ion and electron plasma experiment on the Fast Auroral Snapshot satellite (FAST) is designed to measure pitch-angle distributions of suprathermal auroral electrons and ions with high sensitivity, wide dynamic range, good energy and angular resolution, and exceptional time resolution. These measurements support the primary scientific goal of the FAST mission to understand the physical processes responsible for auroral particle acceleration and heating, and associated wave-particle interactions. The instrument includes a complement of 8 pairs of `Top Hat' electrostatic analyzer heads with microchannel plate (MCP) electron multipliers and discrete anodes to provide angle resolved measurements. The analyzers are packaged in four instrument stacks, each containing four analyzers. These four stacks are equally spaced around the spacecraft spin plane. Analyzers mounted on opposite sides of the spacecraft operate in pairs such that their individual 180° fields of view combine to give an unobstructed 360° field of view in the spin plane. The earth's magnetic field is within a few degrees of the spin plane during most auroral crossings, so the time resolution for pitch-angle distribution measurements is independent of the spacecraft spin period. Two analyzer pairs serve as electron and ion spectrometers that obtain distributions of 48 energies at 32 angles every 78 ms. Their standard energy ranges are 4 eV to 32 keV for electrons and 3 eV to 24 keV for ions. These sensors also have deflection plates that can track the magnetic field direction within 10° of the spin plane to resolve narrow, magnetic field-aligned beams of electrons and ions. The remaining six analyzer pairs collectively function as an electron spectrograph, resolving distributions with 16 contiguous pitch-angle bins and a selectable trade-off of energy and time resolution. Two examples of possible operating modes are a maximum time resolution mode with 16 angles and 6 energies every 1.63 ms, or a maximum energy resolution mode with 16 angles and 48 energies every 13 ms. The instrument electronics include mcp pulse amplifiers and counters, high voltage supplies, command/data interface circuits, and diagnostic test circuits. All data formatting, commanding, timing and operational control of the plasma analyzer instrument are managed by a central instrument data processing unit (IDPU), which controls all of the FAST science instruments. The IDPU creates slower data modes by averaging the high rate measurements collected on the spacecraft. A flexible combination of burst mode data and slower `survey' data are defined by IDPU software tables that can be revised by command uploads. Initial flight results demonstrate successful achievement of all measurement objectives.

[1]  J. P. McFadden,et al.  Science Operations and Data Handling for the FAST Satellite , 2001 .

[2]  J. G. Watzin,et al.  The Fast Auroral SnapshoT (FAST) Mission , 1998 .

[3]  R. Elphic,et al.  FAST observations of VLF waves in the auroral zone: Evidence of very low plasma densities , 1998 .

[4]  David Klumpar,et al.  Electron modulation and ion cyclotron waves observed by FAST , 1998 .

[5]  H. Höfner,et al.  The TESP electron spectrometer and correlator (F7) on Freja , 1994 .

[6]  E. Shelley,et al.  Counterstreaming electron beams at altitudes of ∼1 RE over the auroral zone , 1980 .

[7]  C. Carlson,et al.  Field-aligned electron flux oscillations that produce flickering aurora , 1987 .

[8]  R. Ergun,et al.  Microstructure of the auroral acceleration region as observed by FAST , 1999 .

[9]  Robert Wilkes,et al.  Deployment Mechanisms on the Fast Satellite: Magnetometer, Radial Wire, and Axial Booms , 2001 .

[10]  J. P. McFadden,et al.  Computer simulation in designing electrostatic optics for space plasma experiments , 1998 .

[11]  G. Paschmann,et al.  An instrument for rapidly measuring plasma distribution functions with high resolution , 1982 .

[12]  C. Carlson,et al.  Field‐aligned electron precipitation at the edge of an arc , 1986 .

[13]  P. R. Harvey,et al.  The FAST Spacecraft Instrument Data Processing Unit , 2001 .

[14]  Joseph E. Borovsky,et al.  Measurement techniques in space plasmas : particles , 1998 .

[15]  M. Hudson,et al.  Observations of paired electrostatic shocks in the polar magnetosphere , 1977 .

[16]  D. Gurnett The Earth as a radio source: Terrestrial kilometric radiation , 1974 .