A local approach to parameter space reduction for regression and classification tasks

Frequently, the parameter space, chosen for shape design or other applications that involve the definition of a surrogate model, present subdomains where the objective function of interest is highly regular or well behaved. So, it could be approximated more accurately if restricted to those subdomains and studied separately. The drawback of this approach is the possible scarsity of data in some applications, but in those, where a quantity of data, moderately abundant considering the parameter space dimension and the complexity of the objective function, is available, partitioned or local studies are beneficial. In this work we propose a new method called local active subspaces (LAS), which explores the synergies of active subspaces with supervised clustering techniques in order to perform a more efficient dimension reduction in the parameter space for the design of accurate response surfaces. We also developed a procedure to exploit the local active subspace information for classification tasks. Using this technique as a preprocessing step onto the parameter space, or output space in case of vectorial outputs, brings remarkable results for the purpose of surrogate modelling.

[1]  Gianluigi Rozza,et al.  Kernel‐based active subspaces with application to computational fluid dynamics parametric problems using the discontinuous Galerkin method , 2020, International journal for numerical methods in engineering.

[2]  Tiangang Cui,et al.  Certified dimension reduction in nonlinear Bayesian inverse problems , 2018, Math. Comput..

[3]  Gianluigi Rozza,et al.  ATHENA: Advanced Techniques for High Dimensional Parameter Spaces to Enhance Numerical Analysis , 2021, Softw. Impacts.

[4]  Gianluigi Rozza,et al.  Hull shape design optimization with parameter space and model reductions, and self-learning mesh morphing , 2021, Journal of Marine Science and Engineering.

[5]  Gianluigi Rozza,et al.  A supervised learning approach involving active subspaces for an efficient genetic algorithm in high-dimensional optimization problems , 2020, SIAM J. Sci. Comput..

[6]  Gianluigi Rozza,et al.  Multi‐fidelity data fusion for the approximation of scalar functions with low intrinsic dimensionality through active subspaces , 2020, PAMM.

[7]  Fabien Casenave,et al.  Model order reduction assisted by deep neural networks (ROM-net) , 2020, Advanced Modeling and Simulation in Engineering Sciences.

[8]  Gianluigi Rozza,et al.  Enhancing CFD predictions in shape design problems by model and parameter space reduction , 2020, Adv. Model. Simul. Eng. Sci..

[9]  Martin W. Hess,et al.  Basic Ideas and Tools for Projection-Based Model Reduction of Parametric Partial Differential Equations , 2019, Snapshot-Based Methods and Algorithms.

[10]  M. Parente,et al.  Generalized bounds for active subspaces , 2019, Electronic Journal of Statistics.

[11]  Y. Marzouk,et al.  Gradient-Based Dimension Reduction of Multivariate Vector-Valued Functions , 2018, SIAM J. Sci. Comput..

[12]  G. Rozza,et al.  A non-intrusive approach for the reconstruction of POD modal coefficients through active subspaces , 2019, Comptes Rendus Mécanique.

[13]  Robert A. Bridges,et al.  Active Manifolds: A non-linear analogue to Active Subspaces , 2019, ICML.

[14]  Jiaxin Zhang,et al.  Learning nonlinear level sets for dimensionality reduction in function approximation , 2019, NeurIPS.

[15]  Erich Schubert,et al.  Faster k-Medoids Clustering: Improving the PAM, CLARA, and CLARANS Algorithms , 2018, SISAP.

[16]  Gianluigi Rozza,et al.  Advances in reduced order methods for parametric industrial problems in computational fluid dynamics , 2018, 1811.08319.

[17]  G. Rozza,et al.  An integrated data-driven computational pipeline with model order reduction for industrial and applied mathematics , 2018, 1810.12364.

[18]  G. Rozza,et al.  Combined Parameter and Model Reduction of Cardiovascular Problems by Means of Active Subspaces and POD-Galerkin Methods , 2017, 1711.10884.

[19]  Gianluigi Rozza,et al.  Dimension reduction in heterogeneous parametric spaces with application to naval engineering shape design problems , 2017, Advanced Modeling and Simulation in Engineering Sciences.

[20]  Paul G. Constantine,et al.  A modified SEIR model for the spread of Ebola in Western Africa and metrics for resource allocation , 2016, Appl. Math. Comput..

[21]  Gianluigi Rozza,et al.  Advances in geometrical parametrization and reduced order models and methods for computational fluid dynamics problems in applied sciences and engineering: overview and perspectives , 2016 .

[22]  Kinjal Basu,et al.  Transformations and Hardy-Krause Variation , 2015, SIAM J. Numer. Anal..

[23]  A. Strauß Theory Of Wing Sections Including A Summary Of Airfoil Data , 2016 .

[24]  T. Sullivan Introduction to Uncertainty Quantification , 2015 .

[25]  Paul G. Constantine,et al.  Active Subspaces - Emerging Ideas for Dimension Reduction in Parameter Studies , 2015, SIAM spotlights.

[26]  Juan J. Alonso,et al.  Active Subspaces for Shape Optimization , 2014 .

[27]  Gilles Louppe,et al.  Independent consultant , 2013 .

[28]  A. Pinkus Ridge Functions: Approximation Algorithms , 2015 .

[29]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[30]  Joel A. Tropp,et al.  User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..

[31]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[32]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[33]  Hae-Sang Park,et al.  A simple and fast algorithm for K-medoids clustering , 2009, Expert Syst. Appl..

[34]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[35]  Sayan Mukherjee,et al.  Localized Sliced Inverse Regression , 2008, NIPS.

[36]  C. Farhat,et al.  Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity , 2008 .

[37]  Masashi Sugiyama,et al.  Dimensionality Reduction of Multimodal Labeled Data by Local Fisher Discriminant Analysis , 2007, J. Mach. Learn. Res..

[38]  Yvon Maday,et al.  A reduced basis element method for the steady stokes problem , 2006 .

[39]  Christopher K. I. Williams,et al.  Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .

[40]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[41]  Robert Tibshirani,et al.  Discriminant Adaptive Nearest Neighbor Classification , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Ker-Chau Li,et al.  Sliced Inverse Regression for Dimension Reduction , 1991 .

[43]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[44]  R. M. Hicks,et al.  Wing Design by Numerical Optimization , 1977 .

[45]  F. E. Maranzana,et al.  On the Location of Supply Points to Minimize Transport Costs , 1964 .

[46]  Eastman N. Jacobs,et al.  The characteristics of 78 related airfoil sections from tests in the variable-density wind tunnel , 1932 .