Tailoring of Electron-Collecting Oxide Nanoparticulate Layer for Flexible Perovskite Solar Cells.

Low-temperature-processed perovskite solar cells (PSCs), especially those fabricated on flexible substrates, exhibit device performance that is worse than that of high-temperature-processed PSCs. One of the main reasons for the inferior performance of low-temperature-processed PSCs is the loss of photogenerated electrons in the electron collection layer (ECL) or related interfaces, i.e., indium tin oxide/ECL and ECL/perovskite. Here, we report that tailoring of the energy level and electron transporting ability in oxide ECLs using Zn2SnO4 nanoparticles and quantum dots notably minimizes the loss of photogenerated electrons in the low-temperature-fabricated flexible PSC. The proposed ECL with methylammonium lead halide [MAPb(I0.9Br0.1)3] leads to fabrication of significantly improved flexible PSCs with steady-state power conversion efficiency of 16.0% under AM 1.5G illumination of 100 mW cm(-2) intensity. These results provide an effective method for fabricating high-performance, low-temperature solution-processed flexible PSCs.

[1]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[2]  L. Etgar,et al.  Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. , 2014, Physical chemistry chemical physics : PCCP.

[3]  C. Brabec,et al.  Origin of the Open Circuit Voltage of Plastic Solar Cells , 2001 .

[4]  M. Grätzel,et al.  The Role of a “Schottky Barrier” at an Electron‐Collection Electrode in Solid‐State Dye‐Sensitized Solar Cells , 2006 .

[5]  B. To,et al.  Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential , 2015, Nature Communications.

[6]  Dong Hoe Kim,et al.  A Newly Designed Nb-Doped TiO2/Al-Doped ZnO Transparent Conducting Oxide Multilayer for Electrochemical Photoenergy Conversion Devices , 2010 .

[7]  G. Konstantatos,et al.  Solution-processed PbS quantum dot infrared photodetectors and photovoltaics , 2005, Nature materials.

[8]  A Paul Alivisatos,et al.  Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution , 2005, Science.

[9]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[10]  Matt Law,et al.  Schottky solar cells based on colloidal nanocrystal films. , 2008, Nano letters.

[11]  Chiara Bertarelli,et al.  17.6% stabilized efficiency in low-temperature processed planar perovskite solar cells , 2015 .

[12]  Jieshan Qiu,et al.  High performance hybrid solar cells sensitized by organolead halide perovskites , 2013 .

[13]  A. J. Frank,et al.  Effects of Annealing Temperature on the Charge-Collection and Light-Harvesting Properties of TiO2 Nanotube-Based Dye-Sensitized Solar Cells , 2010 .

[14]  Linfeng Liu,et al.  Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. , 2015, Journal of the American Chemical Society.

[15]  Seong Sik Shin,et al.  Fabrication of metal-oxide-free CH3NH3PbI3 perovskite solar cells processed at low temperature , 2015 .

[16]  J. Bisquert,et al.  Electrical field profile and doping in planar lead halide perovskite solar cells , 2014 .

[17]  Francisco Fabregat-Santiago,et al.  Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[18]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[19]  Illan J. Kramer,et al.  Solar cells using quantum funnels. , 2011, Nano letters.

[20]  Dong Wook Kim,et al.  Synthesis and photovoltaic property of fine and uniform Zn2SnO4 nanoparticles. , 2012, Nanoscale.

[21]  Dong Yang,et al.  High efficiency flexible perovskite solar cells using superior low temperature TiO2 , 2015 .

[22]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[23]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[24]  Yang Yang,et al.  Working Mechanism for Flexible Perovskite Solar Cells with Simplified Architecture. , 2015, Nano letters.

[25]  S. Mathur,et al.  Phase-selective microwave synthesis and inkjet printing applications of Zn2SnO4 (ZTO) quantum dots , 2012 .

[26]  Lioz Etgar,et al.  Depleted hole conductor-free lead halide iodide heterojunction solar cells , 2013 .

[27]  Hyun Suk Jung,et al.  Highly efficient and bending durable perovskite solar cells: toward a wearable power source , 2015 .

[28]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[29]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[30]  Seong Sik Shin,et al.  High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C , 2015, Nature Communications.

[31]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[32]  Illan J. Kramer,et al.  Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films , 2015, Nature Communications.

[33]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[34]  Juan Bisquert,et al.  Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. , 2013, Nano letters.

[35]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.